scholarly journals Bivalirudin Attenuates Thrombin-Induced Endothelial Hyperpermeability via S1P/S1PR2 Category: Original Articles

2021 ◽  
Vol 12 ◽  
Author(s):  
Haowen Ye ◽  
Yizhi Zhang ◽  
Yihui Huang ◽  
Biao Li ◽  
Ruhao Cao ◽  
...  

Aims: To explore the role of the Sphingosine 1-Phosphate (S1P)/Receptor2 (S1PR2) pathway in thrombin-induced hyperpermeability (TIP) and to test whether bivalirudin can reverse TIP via the S1P-S1PRs pathway.Methods and Results: Using western blot, we demonstrated that Human umbilical vein endothelial cells (HUVECs) that were cultured with 2 U/ml thrombin showed significantly increased S1PR2 expression while S1PR1and three kept unchanged. Such increment was attenuated by JTE-013 pretreatment and by presence of bivalirudin. Exposure of 2 U/ml of thrombin brought a higher level of S1P both intracellularly and extracellularly within the HUVECs by using ELISA detecting. Thrombin induced S1P and S1PR2 increment was restored by usage of PF543 and bivalirudin. Bivalirudin alone did not influenced the level of S1P and S1PR1,2, and S1PR3 compare to control group. As a surrogate of cytoskeleton morphology, phalloidin staining and immunofluorescence imaging were used. Blurry cell edges and intercellular vacuoles or spaces were observed along thrombin-exposed HUVECs. Presence of JTE-013 and bivalirudin attenuated such thrombin-induced permeability morphological change and presence of heparin failed to show the protective effect. Transwell chamber assay and probe assay were used to measure and compare endothelial permeability in vitro. An increased TIP was observed in HUVECs cultured with thrombin, and coculture with bivalirudin, but not heparin, alleviated this increase. JTE-013 treatment yielded to similar TIP alleviating effect. In vivo, an Evans blue assay was used to test subcutaneous and organ microvascular permeability after the treatment of saline only, thrombin + saline, thrombin + bivalirudin, thrombin + heparin or thrombin + JTE-013. Increased subcutaneous and organ tissue permeability after thrombin treatment was observed in thrombin + saline and thrombin + heparin groups while treatment of bivalirudin and JTE-013 absent this effect.Conclusion: S1P/S1PR2 mediates TIP by impairing vascular endothelial barrier function. Unlike heparin, bivalirudin effectively blocked TIP by inhibiting the thrombin-induced S1P increment and S1PR2 expression, suggesting the novel endothelial protective effect of bivalirudin under pathological procoagulant circumstance.

2018 ◽  
Vol 51 (1) ◽  
pp. 1701096 ◽  
Author(s):  
Carole Phan ◽  
Etienne-Marie Jutant ◽  
Ly Tu ◽  
Raphaël Thuillet ◽  
Andrei Seferian ◽  
...  

Pleural effusion is a frequent side-effect of dasatinib, a second-generation tyrosine kinase inhibitor used in the treatment of chronic myelogenous leukaemia. However, the underlying mechanisms remain unknown. We hypothesised that dasatinib alters endothelial integrity, resulting in increased pulmonary vascular endothelial permeability and pleural effusion.To test this, we established the first animal model of dasatinib-related pleural effusion, by treating rats with a daily regimen of high doses of dasatinib (10 mg·kg−1·day−1 for 8 weeks).Pleural ultrasonography revealed that rats chronically treated with dasatinib developed pleural effusion after 5 weeks. Consistent with these in vivo observations, dasatinib led to a rapid and reversible increase in paracellular permeability of human pulmonary endothelial cell monolayers as reflected by increased macromolecule passage, loss of vascular endothelial cadherin and zonula occludens-1 from cell–cell junctions, and the development of actin stress fibres. These results were replicated using human umbilical vein endothelial cells and confirmed by decreased endothelial resistance. Interestingly, we demonstrated that this increased endothelial permeability is a reactive oxygen species (ROS)-dependent mechanism in vitro and in vivo using a cotreatment with an antioxidant agent, N-acetylcysteine.This study shows that dasatinib alters pulmonary endothelial permeability in a ROS-dependent manner in vitro and in vivo leading to pleural effusion.


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


2020 ◽  
Author(s):  
K. Zerrouki ◽  
N. Djebli ◽  
L. Gadouche ◽  
I. Erdogan Orhan ◽  
F. SezerSenol Deniz ◽  
...  

Nowadays, because of the industrialization, a lot of contaminant were available ; the consequences of this availability are apparition of diseases including neurodegeneration. Neurodegenerative diseases of the human brain comprise a variety of disorders that affect an increasing percentage of the population. This study is based on the effect of the Boswellic resin, which is from a medicinal plant and known for its antioxidant effects on nerve cell damage. The objective of this work was to evaluate the in vitro and in vivo effects of the Boswellic resin on anticholinesterase activity and Alzheimer’s disease (AD) induced by D-galactose and aluminum tetrachloride in Swiss mice. Chemical composition of the resin essential oil was identified by the CG-MS analysis. The antioxidant activity was also assessed by the DMPD and metal chelation methods. In order to understand the mechanism of memory improvement, the acetylcholinesterase, AChE, and butyrylcholinesterase, BChE, inhibitory assays were performed. In vivo part of the study was achieved on Swiss mice divided into four groups: control, AD model, treated AD, and treated control group. The identification of chemical composition by CG-MS reach the 89.67% of the total extract compounds presented some very important molecules (p-Cymene, n-Octyl acetate, α-Pinene…). The present study proves that Boswellic resin improves memory and learning in treated Alzheimer’s group, modulates the oxidative stress and be involved in the protective effect against amyloid deposition and neurodegeneration, and stimulates the immune system in mice’s brain.


Author(s):  
Susan Gallogly ◽  
Takeshi Fujisawa ◽  
John D. Hung ◽  
Mairi Brittan ◽  
Elizabeth M. Skinner ◽  
...  

Abstract Purpose Endothelial dysfunction is central to the pathogenesis of acute coronary syndrome. The study of diseased endothelium is very challenging due to inherent difficulties in isolating endothelial cells from the coronary vascular bed. We sought to isolate and characterise coronary endothelial cells from patients undergoing thrombectomy for myocardial infarction to develop a patient-specific in vitro model of endothelial dysfunction. Methods In a prospective cohort study, 49 patients underwent percutaneous coronary intervention with thrombus aspiration. Specimens were cultured, and coronary endothelial outgrowth (CEO) cells were isolated. CEO cells, endothelial cells isolated from peripheral blood, explanted coronary arteries, and umbilical veins were phenotyped and assessed functionally in vitro and in vivo. Results CEO cells were obtained from 27/37 (73%) atherothrombotic specimens and gave rise to cells with cobblestone morphology expressing CD146 (94 ± 6%), CD31 (87 ± 14%), and von Willebrand factor (100 ± 1%). Proliferation of CEO cells was impaired compared to both coronary artery and umbilical vein endothelial cells (population doubling time, 2.5 ± 1.0 versus 1.6 ± 0.3 and 1.2 ± 0.3 days, respectively). Cell migration was also reduced compared to umbilical vein endothelial cells (29 ± 20% versus 85±19%). Importantly, unlike control endothelial cells, dysfunctional CEO cells did not incorporate into new vessels or promote angiogenesis in vivo. Conclusions CEO cells can be reliably isolated and cultured from thrombectomy specimens in patients with acute coronary syndrome. Compared to controls, patient-derived coronary endothelial cells had impaired capacity to proliferate, migrate, and contribute to angiogenesis. CEO cells could be used to identify novel therapeutic targets to enhance endothelial function and prevent acute coronary syndromes.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ke Gong ◽  
Juyang Jiao ◽  
Chaoqun Xu ◽  
Yang Dong ◽  
Dongxiao Li ◽  
...  

Abstract Background Overexpressed vascular endothelial growth factor A (VEGFA) and phosphorylated signal transducer and activator of transcription 3 (P-STAT3) cause unrestricted tumor growth and angiogenesis of breast cancer (BRCA), especially triple-negative breast cancer (TNBC). Hence, novel treatment strategy is urgently needed. Results We found sphingosine 1 phosphate receptor 1 (S1PR1) can regulate P-STAT3/VEGFA. Database showed S1PR1 is highly expressed in BRCA and causes the poor prognosis of patients. Interrupting the expression of S1PR1 could inhibit the growth of human breast cancer cells (MCF-7 and MDA-MB-231) and suppress the angiogenesis of human umbilical vein endothelial cells (HUVECs) via affecting S1PR1/P-STAT3/VEGFA axis. Siponimod (BAF312) is a selective antagonist of S1PR1, which inhibits tumor growth and angiogenesis in vitro by downregulating the S1PR1/P-STAT3/VEGFA axis. We prepared pH-sensitive and tumor-targeted shell-core structure nanoparticles, in which hydrophilic PEG2000 modified with the cyclic Arg-Gly-Asp (cRGD) formed the shell, hydrophobic DSPE formed the core, and CaP (calcium and phosphate ions) was adsorbed onto the shell; the nanoparticles were used to deliver BAF312 (BAF312@cRGD-CaP-NPs). The size and potential of the nanoparticles were 109.9 ± 1.002 nm and − 10.6 ± 0.056 mV. The incorporation efficacy for BAF312 was 81.4%. Results confirmed BAF312@cRGD-CaP-NP could dramatically inhibit tumor growth and angiogenesis in vitro and in MDA-MB-231 tumor-bearing mice via downregulating the S1PR1/P-STAT3/VEGFA axis. Conclusions Our data suggest a potent role for BAF312@cRGD-CaP-NPs in treating BRCA, especially TNBC by downregulating the S1PR1/P-STAT3/VEGFA axis. Graphic abstract


2015 ◽  
Vol 35 (3) ◽  
pp. 875-884 ◽  
Author(s):  
Hongyuan Song ◽  
Dongyan Pan ◽  
Weifeng Sun ◽  
Cao Gu ◽  
Yuelu Zhang ◽  
...  

Background/Aims: Annexin II receptor (AXIIR) is able to mediate Annexin II signal and induce apoptosis, but its role in angiogenesis remains unclear. This study tries to investigate the role of AXIIR in angiogenesis and the plausible molecular mechanism. Methods/Results: RNA interference technology was used to silence AXIIR, and the subsequent effects in vitro and in vivo were evaluated thereafter. Our data indicated that human umbilical vein endothelial cells (HUVECs) expressed AXIIR and knockdown of AXIIR significantly inhibited HUVECs proliferation, adhesion, migration, and tube formation in vitro and suppressed angiogenesis in vivo. Furthermore, AXIIR siRNA induced cell arrest in the S/G2 phase while had no effect on cell apoptosis. We found that these subsequent effects might be via suppressing the expression of matrix metalloproteinase 2and matrix metalloproteinase 9. Conclusion: AXIIR participates in angiogenesis, and may be a potential therapeutic target for angiogenesis related diseases.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Pollyanna Francielli de Oliveira ◽  
Suzana Amorim Mendes ◽  
Nathália Oliveira Acésio ◽  
Luis Claudio Kellner Filho ◽  
Leticia Pereira Pimenta ◽  
...  

The medicinal plant Vochysia divergens is a colonizing tree species of the Pantanal, a unique and little explored wetland region in Brazil. This species is used in folk medicine as syrups and teas to treat respiratory infections, digestive disorders, asthma, scarring, and skin diseases. The objectives of this study were to evaluate the antioxidant, cytotoxic, and genotoxic potential of the ethanolic extract of Vochysia divergens leaves (VdE), as well as the influence of VdE and its major component (the flavone 3′,5-dimethoxy luteolin-7-O-β-glucopyranoside; 3′5 DL) on MMS-induced genotoxicity. The extract significantly reduced the viability of V79 cells in the colorimetric XTT assay at concentrations ≥ 39 μg/mL. A significant increase in micronucleus frequencies was observed in V79 cell cultures treated with VdE concentrations of 160 and 320 μg/mL. However, animals treated with the tested doses of VdE (500, 1000, and 2000 mg/kg b.w.) exhibited frequencies that did not differ significantly from those of the negative control group, indicating the absence of genotoxicity. The results also showed that VdE was effective in reducing MMS-induced genotoxicity at concentrations of 20, 40, and 80 μg/mL in the in vitro test system and at a dose of 15 mg/kg b.w. in the in vivo test system. Its major component 3′5 DL exerted no protective effect, suggesting that it is not responsible for the effect of the extract. The results of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that VdE was able to scavenge 92.6% of free radicals. In conclusion, the results suggest that the protective effect of VdE may be related, at least in part, to the antioxidant activity of its chemical constituents.


2017 ◽  
Vol 313 (4) ◽  
pp. L710-L721 ◽  
Author(s):  
Yunbo Ke ◽  
Olga V. Oskolkova ◽  
Nicolene Sarich ◽  
Yufeng Tian ◽  
Albert Sitikov ◽  
...  

Prostaglandins (PG), the products of cyclooxygenase-mediated conversion of arachidonic acid, become upregulated in many situations including allergic response, inflammation, and injury, and exhibit a variety of biological activities. Previous studies described barrier-enhancing and anti-inflammatory effects of PGE2 and PGI2 on vascular endothelial cells (EC). Yet, the effects of other PG members on EC barrier and inflammatory activation have not been systematically analyzed. This study compared effects of PGE2, PGI2, PGF2α, PGA2, PGJ2, and PGD2 on human pulmonary EC. EC permeability was assessed by measurements of transendothelial electrical resistance and cell monolayer permeability for FITC-labeled tracer. Anti-inflammatory effects of PGs were evaluated by analysis of expression of adhesion molecule ICAM1 and secretion of soluble ICAM1 and cytokines by EC. PGE2, PGI2, and PGA2 exhibited the most potent barrier-enhancing effects and most efficient attenuation of thrombin-induced EC permeability and contractile response, whereas PGI2 effectively suppressed thrombin-induced permeability but was less efficient in the attenuation of prolonged EC hyperpermeability caused by interleukin-6 or bacterial wall lipopolysaccharide, LPS. PGD2 showed a modest protective effect on the EC inflammatory response, whereas PGF2α and PGJ2 were without effect on agonist-induced EC barrier dysfunction. In vivo, PGE2, PGI2, and PGA2 attenuated LPS-induced lung inflammation, whereas PGF2α and PGJ2 were without effect. Interestingly, PGD2 exhibited a protective effect in the in vivo model of LPS-induced lung injury. This study provides a comprehensive analysis of barrier-protective and anti-inflammatory effects of different prostaglandins on lung EC in vitro and in vivo and identifies PGE2, PGI2, and PGA2 as prostaglandins with the most potent protective properties.


2017 ◽  
Vol 33 (9) ◽  
pp. 592-599 ◽  
Author(s):  
Francesca Felice ◽  
Ester Belardinelli ◽  
Alessandro Frullini ◽  
Tatiana Santoni ◽  
Egidio Imbalzano ◽  
...  

Objectives Aminaphtone, a naphtohydrochinone used in the treatment of capillary disorders, may affect oedema in chronic venous insufficiency. Aim of study is to investigate the effect of aminaphtone on vascular endothelial permeability in vitro and its effects on three-dimensional capillary-like structures formed by human umbilical vein endothelial cells. Method Human umbilical vein endothelial cells were treated with 50 ng/ml VEGF for 2 h and aminaphtone for 6 h. Permeability assay, VE-cadherin expression and Matrigel assay were performed. Results VEGF-induced permeability was significantly decreased by aminaphtone in a range concentration of 1–20 µg/ml. Aminaphtone restored VE-cadherin expression. Finally, 6 h pre-treatment with aminaphtone significantly preserved capillary-like structures formed by human umbilical vein endothelial cells on Matrigel up to 48 h compared to untreated cells. Conclusions Aminaphtone significantly protects endothelium permeability and stabilises endothelial cells organised in capillary-like structures, modulating VE-cadherin expression. These data might explain the clinical benefit of aminaphtone on chronic venous insufficiency.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Fawang Zhu ◽  
Shuai Yuan ◽  
Jing Li ◽  
Yun Mou ◽  
Zhiqiang Hu ◽  
...  

Background. Cilengitide is a selective αvβ3 and αvβ5 integrin inhibitor. We sought to investigate the effect of cilengitide on the neovascularization of abdominal aortic plaques in rabbits and explore its underlying antiangiogenic mechanism on human umbilical vein endothelial cells (HUVECs). Materials and Methods. For the in vivo experiment, the abdominal aortic plaque model of rabbits was established and injected with different doses of cilengitide or saline for 14 consecutive days. Conventional ultrasound (CUS) and contrast-enhanced ultrasound (CEUS) were applied to measure the vascular structure and blood flow parameters. CD31 immunofluorescence staining was performed for examining neovascularization. Relative expressions of vascular endothelial growth factor (VEGF) and integrin of the plaque were determined. For in vitro experiments, HUVECs were tested for proliferation, migration, apoptosis, and tube formation in the presence of different doses of cilengitide. Relative expressions of VEGF, integrin, and Ras/ERK/AKT signaling pathways were determined for the exploration of underlying mechanism. Results. CEUS showed modestly increased size and eccentricity index (EI) of plaques in the control group. Different degrees of reduced size and EI of plaques were observed in two cilengitide treatment groups. The expressions of VEGF and integrin in the plaque were inhibited after 14 days of cilengitide treatment. The neovascularization and apoptosis of the abdominal aorta were also significantly alleviated by cilengitide treatment. For in vitro experiments, cilengitide treatment was found to inhibit the proliferation, migration, and tube formation of HUVECs. However, cilengitide did not induce the apoptosis of HUVECs. A higher dose of cilengitide inhibited the mRNA expression of VEGF-A, β3, and β5, but not αV. Lastly, cilengitide treatment significantly inhibited the Ras/ERK/AKT pathway in the HUVECs. Conclusions. This study showed that cilengitide effectively inhibited the growth of plaque size by inhibiting the angiogenesis of the abdominal aortic plaques and blocking the VEGF-mediated angiogenic effect on HUVECs.


Sign in / Sign up

Export Citation Format

Share Document