scholarly journals The Role of Traditional Plant Knowledge in the Fight Against Infectious Diseases: A Meta-Analytic Study in the Catalan Linguistic Area

2021 ◽  
Vol 12 ◽  
Author(s):  
Airy Gras ◽  
Montse Parada ◽  
Joan Vallès ◽  
Teresa Garnatje

Infectious diseases represent, as a group, the main cause of mortality in the world. The most important reasons are multidrug-resistant pathogens, the rapid spread of emerging diseases aggravated by globalization, and the extended reach of tropical and vector-borne diseases resulting from continued climate change. Given the increase in these diseases and the limited effectiveness of antibiotics, traditional knowledge can constitute a useful tool to address these new health challenges. The aim of this work is to analyze extensively the available ethnobotanical data linked to infections and infestations in the Catalan linguistic area, with the intention of depicting the panorama of the folk use of herbal products to address the quoted ailments, preserving the popular plant knowledge and management data. The meta-analytic work performed in the present study covers 29 research studies belonging to different regions throughout the Catalan linguistic area. The medicinal ethnoflora to treat infections and infestations in the Catalan linguistic area includes 326 taxa belonging to 78 botanical families of vascular plants. The informant consensus factor (FIC) was 0.92, and the ethnobotanicity index (EI) was 7.26%. Artemisia absinthium (10.98%; 0.37) and Thymus vulgaris (8.06%; 0.27) are the most quoted taxa and have the highest values of the cultural importance index. The most reported use was antihelminthic (30.15%), followed by internal antiseptic (19.43%) and antipyretic (13.69%). The medicinal importance index shows the relevance of the antihelminthic use (14.23) and also the use against measles (10.19). The information is coincidental with at least one of the comprehensive pharmacological literature sources checked for 47.42% of ethnobotanical uses. These results, centered on the plants used to treat infection and infestation diseases, are the first step toward selecting some of the most interesting species to develop phytochemical and pharmacological studies and suggesting an alternative regarding how to face the health emergency involving the expansion of infectious diseases, based on local and traditional knowledge.

Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1009 ◽  
Author(s):  
Priyanka Singh ◽  
Abhroop Garg ◽  
Santosh Pandit ◽  
V. Mokkapati ◽  
Ivan Mijakovic

Infectious diseases pose one of the greatest health challenges in the medical world. Though numerous antimicrobial drugs are commercially available, they often lack effectiveness against recently developed multidrug resistant (MDR) microorganisms. This results in high antibiotic dose administration and a need to develop new antibiotics, which in turn requires time, money, and labor investments. Recently, biogenic metallic nanoparticles have proven their effectiveness against MDR microorganisms, individually and in synergy with the current/conventional antibiotics. Importantly, biogenic nanoparticles are easy to produce, facile, biocompatible, and environmentally friendly in nature. In addition, biogenic nanoparticles are surrounded by capping layers, which provide them with biocompatibility and long-term stability. Moreover, these capping layers provide an active surface for interaction with biological components, facilitated by free active surface functional groups. These groups are available for modification, such as conjugation with antimicrobial drugs, genes, and peptides, in order to enhance their efficacy and delivery. This review summarizes the conventional antibiotic treatments and highlights the benefits of using nanoparticles in combating infectious diseases.


Author(s):  
Maria José Saavedraa ◽  
João Carlos Sousa

Resumo A elevada mortalidade pelas doenças infecciosas, sobretudo epidémicas, mobilizou os cientistas na pesquisa de compostos naturais e produtos de síntese química dotados de propriedades antimicrobianas. Fazendo um pouco de história, referimos Paul Ehrlich, que utilizou o primeiro agente quimioterapêutico -Salvarsan, mais tarde Gerhard Domagk, que utilizou um pro-fármaco percursor de uma sulfamida. Em 1928, Alexander Fleming, descobriu de forma “casual” a penicilina, o primeiro antibiótico. Posteriormente em 1941 Howard Florey e Ernest Chain isolam e purificam a penicilina o que permitiu a sua utilização em larga escala -Era dos Antibióticos. A utilização dos antibióticos (AB) no tratamento das doenças infecciosas constituiu um dos maiores avanços da Medicina no séc. XX. No entanto a sua utilização em larga escala promoveu o aumento da incidência de estirpes multiresistentes aos AB, sobretudo em ambiente hospitalar. Adicionalmente verifica-se uma ocorrência cada vez mais elevada de estirpes resistentes na comunidade–humanos, animais e ambiente. O conhecimento dos mecanismos de ação e da ineficácia dos diferentes grupos farmacológicos de antibióticos é vital para o desenvolvimento de futuros microbianos, estando a ser estudados microrganismos do solo com a finalidade de encontrara novos fármacos. De realçar que a OMS preconiza que caminhamos rumo a uma "era pós-antibiótico”. Se não houver um plano de ação global para o "uso racional de antibióticos" a OMS prevê que em 2050 a resistência aos antibióticos, poderá matar mais de 10 milhões de pessoas.Palavras-chave: antibioterapia; resistência; antibióticos Abstract The current research on infectious diseases, especially with epidemic potential, has mobilized the scientific community to research on the natural substance and chemical probing products with antimicrobial properties. In a brief history of antibiotics, we refer to Paul Ehrlich, who used the first chemotherapeutic agent - Salvarsan, later Gerhard Domagk, who used a sulfamide precursor prodrug. In 1928 Alexander Fleming "casually" discovered penicillin, the first antibiotic. Later in 1941 Howard Florey and Ernest Chain isolate and purify penicillin that can be used on a large scale - Antibiotics Era. The use of antibiotics (AB) in the treatment of infectious diseases is one of the greatest advances of medicine in the 19th century. However, its large-scale use has increased the incidence of multidrug-resistant processes in AB, especially in a hospital setting. Besides, there is an increasing occurrence of resistant strains in different communities - humans, animals and in the environment. Understand the mechanisms of action and the ineffectiveness of the diverse pharmacological groups of antibiotics is crucial to provide further new antibiotic therapies in the near future. Recent studies have highlighted the soil-derived microorganisms as a novel approach to identify new drug substances. In this context, it is noteworthy that the World Health Organization (WHO) considers that we are moving towards a “post-antibiotic era”. If there is no global action plan for “rational use of antibiotics” WHO predicts that in 2050 the global impacts of antibiotic resistance on human heath will be catastrophic, killing more than 10 million people worldwide. Keywords: antibiotic therapy; resistence; antibiotics


2010 ◽  
Vol 6 (4) ◽  
pp. 438-440 ◽  
Author(s):  
Gudrun Wibbelt ◽  
Marianne S. Moore ◽  
Tony Schountz ◽  
Christian C. Voigt

A conference entitled ‘2nd International Berlin Bat Meeting: Bat Biology and Infectious Diseases’ was held between the 19 and 21 of February 2010 in Berlin, Germany. Researchers from two major disciplines, bat biologists and disease specialists, met for the first time in an interdisciplinary event to share their knowledge about bat-associated diseases. The focus of the meeting was to understand why in particular bats are the hosts of so many of the most virulent diseases globally. During several sessions, key note speakers and participants discussed infectious diseases associated with bats, including viral diseases caused by Henipa-, Filo-, Corona- and Lyssaviruses, the spread of white-nose syndrome in North American bats, bat immunology/immunogenetics, bat parasites, and finally, conservation and human health issues.


Critical Care ◽  
2015 ◽  
Vol 19 (Suppl 1) ◽  
pp. P93
Author(s):  
M Lupse ◽  
M Flonta ◽  
L Herbel ◽  
A Petrovan ◽  
A Binder ◽  
...  

2005 ◽  
Vol 26 (2) ◽  
pp. 138-143 ◽  
Author(s):  
Rebecca H. Sunenshine ◽  
Laura A. Liedtke ◽  
Scott K. Fridkin ◽  
Larry J. Strausbaugh ◽  

AbstractBackground:Although guidelines for multidrug-resistant organisms generally include recommendations for contact precautions and surveillance cultures, it is not known how frequently U.S. hospitals implement these measures on a routine basis and whether infectious diseases consultants endorse their use.Methods:The Emerging Infections Network surveyed its members, infectious diseases consultants, to assess their use of and support for contact precautions and surveillance cultures for routine management of multidrug-resistant organisms in their principal inpatient workplace. Specifically, members were asked about use of these strategies for methicillin-resistantStaphylococcus aureus, vancomycin-resistant enterococci, and multidrug-resistant, gram-negative bacilli on general wards, ICUs, and transplant units.Results:Overall, 400 (86%) of 463 respondents supported the routine use of contact precautions to control one or more multidrug-resistant organisms in at least one unit, and 89% worked in hospitals that use them. In contrast, 50% of respondents favored routine use of surveillance cultures to manage at least one multidrug-resistant organism in any unit, and 30% of respondents worked in hospitals that use them routinely in any unit. Members favored routine use of surveillance cultures significantly more in ICUs and transplant units than in general wards for each multidrug-resistant organism (P<.001).Conclusions:Most of the infectious diseases consultants endorsed the use of contact precautions for routine management of patients colonized or infected with multidrug-resistant organisms and work in hospitals that have implemented them. In contrast, infectious diseases consultants are divided about the role of routine surveillance cultures in multidrug-resistant organism management, and few work in hospitals that use them.


2013 ◽  
Vol 6 ◽  
pp. IDRT.S11205 ◽  
Author(s):  
Kai-Lit Phua

Infectious diseases—including emerging and re-emerging diseases such as Ebola and tuberculosis—continue to be important causes of morbidity and mortality in the globalizing, contemporary world. This article discusses the ethical issues associated with protecting the rights of individuals versus the protection of the health of populations in the case of infectious diseases. The discussion uses the traditional medical ethics approach together with the public health approach presented by Faden and Shebaya. 3 Infectious diseases such as Ebola hemorrhagic fever, Nipah virus and HIV/AIDS (together with tuberculosis) will be used to illustrate particular points in the discussion.


Sign in / Sign up

Export Citation Format

Share Document