scholarly journals Prediction of Leakage Current and Depletion Voltage in Silicon Detectors Under Extraterrestrial Radiation Conditions

2021 ◽  
Vol 9 ◽  
Author(s):  
A. Grummer ◽  
M. R. Hoeferkamp ◽  
S. Seidel

Silicon detection is a mature technology for registering the passage of charged particles. At the same time it continues to evolve toward increasing radiation tolerance as well as precision and adaptability. For these reasons it is likely to remain a critical element of detection of systems associated with extraterrestrial exploration. Silicon sensor leakage current and depletion voltage depend on the integrated fluence received by the sensor and on its thermal history during and after the irradiation process. For minimal assumptions on shielding and hence on the particle energy spectrum, and using published data on Martian ground temperature, we predict the leakage current density and the depletion voltage, as a function of time, of silicon sensors in transit to and deployed continuously on the Mars surface for a duration of up to 28 Earth-years, for several sensor geometries and a worst-case temperature scenario.

Author(s):  
Н.А. Малеев ◽  
М.А. Бобров ◽  
А.Г. Кузьменков ◽  
А.П. Васильев ◽  
М.М. Кулагина ◽  
...  

Optimal capacitance-voltage characteristic is critical for heterobarrier varactor diode (HBV) performance in terms of multiplication efficiency in mm- and sub-mm wave ranges. Numerical model of capacitance-voltage characteristics and leakage current for HBV with arbitrary heterostructure composition and doping profile was verified on published data and original experimental results. Designed HBV heterostructure with three undoped InAlAs/AlAs/InAlAs barriers surrounded with non-uniformly doped n-InGaAs modulation layers was grown by molecular-beam epitaxy on InP substrate and test HBV diodes have been fabricated. Test HBV diodes demonstrate capacitance-voltage characteristics with cosine shape at bias voltage up to two volts, increased capacitance ratio and low leakage current values.


2022 ◽  
Vol 17 (01) ◽  
pp. C01022
Author(s):  
T. Croci ◽  
A. Morozzi ◽  
F. Moscatelli ◽  
V. Sola ◽  
G. Borghi ◽  
...  

Abstract In this work, the results of Technology-CAD (TCAD) device-level simulations of non-irradiated and irradiated Low-Gain Avalanche Diode (LGAD) detectors and their validation against experimental data will be presented. Thanks to the intrinsic multiplication of the charge within these silicon sensors, it is possible to improve the signal to noise ratio thus limiting its drastic reduction with fluence, as it happens instead for standard silicon detectors. Therefore, special attention has been devoted to the choice of the avalanche model, which allows the simulation findings to better fit with experimental data. Moreover, a radiation damage model (called “New University of Perugia TCAD model”) has been fully implemented within the simulation environment, to have a predictive insight into the electrical behavior and the charge collection properties of the LGAD detectors, up to the highest particle fluences expected in the future High Energy Physics (HEP) experiments. This numerical model allows to consider the comprehensive bulk and surface damage effects induced by radiation on silicon sensors. By coupling the “New University of Perugia TCAD model” with an analytical model that describes the mechanism of acceptor removal in the multiplication layer, it has been possible to reproduce experimental data with high accuracy, demonstrating the reliability of the simulation framework.


Author(s):  
G. J. Orme ◽  
M. Venturini

In this paper, a procedure for Risk Assessment, which makes use of two risk indices (PML - Probable Maximum Loss and MFL - Maximum Foreseeable Loss) is applied to power plants to evaluate potential economic losses due to risk exposure for two different loss scenarios (probable and worst-case). The paper is mainly focused on Property Insurance aspects, though Boiler and Machinery Insurance and business interruption are also addressed. First, the procedure is applied to provide a prediction of probable and maximum loss as a function of power output. The results allow an estimate of whether the adoption of risk assessment procedures and devices allows an actual payback for plant owners. Second, the economic loss predicted through the risk assessment procedure is compared against real power plant loss values, taken from published data.


2020 ◽  
Vol 87 (2) ◽  
pp. 266-269
Author(s):  
Malcolm Peaker

AbstractIn this short Research Reflection I address and refute the suggestion that oestrogens consumed in milk might contribute in a significant way to endogenous levels and thereby have a physiological action, possibly resulting in adverse consequences including increased breast cancer risk. Quantitative analysis based on published data shows that, even in worst case scenarios, oestrogen consumption in milk is considerably less than regulatory bodies regard as entirely safe.


2016 ◽  
Vol 11 (09) ◽  
pp. P09006-P09006 ◽  
Author(s):  
G.-F. Dalla Betta ◽  
N. Ayllon ◽  
M. Boscardin ◽  
M. Hoeferkamp ◽  
S. Mattiazzo ◽  
...  

Author(s):  
Clive B. Beggs ◽  
Eldad J. Avital

AbstractAs the world economies get out of the lockdown imposed by the COVID-19 pandemic, there is an urgent need to assess the suitability of known technologies to mitigate COVID-19 transmission in confined spaces such as buildings. This feasibility study looks at the method of upper-room ultraviolet (UV) air disinfection that has already proven its efficacy in preventing the transmission of airborne diseases such as measles and tuberculosis.Using published data from various sources it is shown that the SARS-CoV-2 virus, which causes COVID-19, is highly likely to be susceptible to UV damage while suspended in air irradiated by UV-C at levels that are acceptable and safe for upper-room applications. This is while humans are present in the room. Both the expected and worst-case scenarios are investigated to show the efficacy of the upper-room UV-C approach to reduce COVID-19 air transmission in a confined space with moderate but sufficient height. Discussion is given on the methods of analysis and the differences between virus susceptibility to UV-C when aerosolised or in liquid or on a surface.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Michael S Lloyd ◽  
Eric L Krivitsky ◽  
Paul F Walter ◽  
Jonathan J Langberg

Background: During cardiopulmonary resuscitation, the need for rescuers to stand clear before a shock is delivered invariably interrupts chest compressions. Brief interruptions like these reduce the efficacy of defibrillation in animal models. Current flow through a rescuer in contact with a patient being shocked with modern biphasic waveforms and adhesive patch electrodes has not been investigated. We hypothesized that leakage current is low through a rescuer performing chest compressions at the time of shock delivery. Methods: During 18 elective cardioversions using truncated exponential biphasic waveforms (median energy 200 joules, range 100 –360 joules), an investigator serving as the rescuer placed a gloved hand on the patient’s anterior chest immediately adjacent to the defibrillating patch with approximately 20lbs of pressure to simulate chest compressions. Skin electrodes were used to connect the rescuer’s thigh to the patient’s posterior shoulder, simulating a worst-case return current pathway. During shock delivery, voltage and current through the rescuer (hand to thigh) were recorded using a digital storage oscilloscope during the shock delivery. Results: In no cases were shocks perceptible to the rescuer. Mean patient transthoracic impedance was 57 +/− 14 ohms (range 36 –79 ohms). Potential differences in volts (V) between the rescuer’s wrist and thigh ranged from 1.7 to 14 V (mean 6.7 +/− 2.7 V). Calculated impedances through rescuers ranged from 8,190 to 100,400 ohms (mean 30,100 +/− 20,400 ohms). The average leakage current flowing through the rescuer’s body for each phase of the shock waveform was 273 +/−191 microamperes (range 1 to 910 microamperes). All measured values in our series were well below 2,500 microamperes, an accepted safety standard for earth-leakage current in medical devices. Conclusions: Even in a simulated worst-case scenario, a rescuer performing chest compressions during biphasic external defibrillation is exposed to low levels of leakage current. Our findings demonstrate the safety and feasibility of uninterrupted chest compressions during shock delivery, which may enhance the efficacy of defibrillation and cardiocerebral perfusion.


Author(s):  
A. A. Abou-Auf ◽  
H. A. Abdel-Aziz ◽  
M. M. Abdel-Aziz ◽  
A. G. Wassal ◽  
T. A. Abdul

Sign in / Sign up

Export Citation Format

Share Document