scholarly journals Modulation of TRIB3 and Macrophage Phenotype to Attenuate Insulin Resistance After Downhill Running in Mice

2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Luo ◽  
Yue Zhou ◽  
Qiang Tang ◽  
Lei Ai ◽  
Yuan Zhang

Eccentric exercise training accompanied by a low-fat diet can prevent insulin resistance (IR) and is currently an effective method for the treatment of IR induced by high-fat diet (HFD)-associated obesity. However, the molecular mechanisms underlying this improvement of IR in adipose tissue are still not completely clear. In this study, 5–6-week-old male mice were randomly divided into a standard control diet (SCD) group (SC, n = 12) and a HFD group (HF, n = 72). After 12 weeks, 12 mice in each group were randomly sacrificed. The remaining mice in the HF group were randomly submitted to one of the following experimental protocols for 8 weeks: obesity-HFD-sedentary (OHF-Sed, n = 14), obesity-HFD-exercise (OHF-Ex, n = 16), obesity-SCD-sedentary (OSC-Sed, n = 14), and obesity-SCD-exercise (OSC-Ex, n = 16). All obese mice in the exercise group were subjected to downhill running. Half of the mice in each group received an insulin injection (0.75 U/kg) before sample collection. Epididymal fat was removed and weighed. Adipocyte size and inflammatory cell infiltration were observed by H&E staining. Both basal and insulin-stimulated GLUT4 fluorescence and protein contents were detected by immunofluorescence and Western blot. Levels of IL-1β and IL-10 were detected by ELISA. Protein contents of iNOS, Arg-1, TRIB3, p-AKT, and AKT were determined by Western blot. CD86 and CD206 fluorescence were determined by immunofluorescence. The results showed that a HFD for 12 weeks induced IR accompanied by adipose tissue macrophages M1 polarization (increased iNOS protein content and CD86 fluorescence) and TRIB3-AKT activation. Downhill running accompanied by a low-fat diet attenuated IR (p < 0.01), reduced inflammation levels (increased IL-10 protein content and decreased IL-1β protein content), inhibited adipose tissue macrophages M1 polarization (decreased iNOS protein content and CD86 fluorescence) and promoted M2 polarization (increased Arg-1 protein content and CD206 fluorescence), and suppressed TRIB3-AKT signaling. We concluded that downhill running accompanied by dietary fat regulation attenuates HFD-related IR in mice, which may be associated with reduced TRIB3-AKT signaling and activated M2 macrophages in adipose tissue.

2012 ◽  
Vol 303 (11) ◽  
pp. E1313-E1324 ◽  
Author(s):  
Curtis L. Gabriel ◽  
Patricia B. Smith ◽  
Yanice V. Mendez-Fernandez ◽  
Ashley J. Wilhelm ◽  
Audrey Musi Ye ◽  
...  

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the production of autoantibodies against self-antigens such as double-stranded DNA and phospholipids. Classical comorbidities of SLE include glomerulonephritis, infection, cardiovascular disease, arthritis, skin disorders, and neurological disease. In addition to these classical comorbidities, there is emerging evidence that SLE patients are at higher risk of developing insulin resistance and other components of the metabolic syndrome. Visceral adipose tissue inflammation is a central mediator of insulin resistance in the obese setting, but the mechanism behind the pathogenesis of metabolic disease in the SLE patient population is unclear. We hypothesize that lupus-associated changes in the adaptive immune system are associated with disruption in glucose homeostasis in the context of SLE. To test this hypothesis, we assessed the metabolic and immunological phenotype of SLE-prone B6.SLE mice. B6.SLE mice fed a low-fat diet had significantly worsened glucose tolerance, increased adipose tissue insulin resistance, increased β-cell insulin secretion, and increased adipocyte size compared with their respective B6 controls. Independently of diet, B cells isolated from the white adipose tissue of B6.SLE mice were skewed toward IgG production, and the level of IgG1 was elevated in the serum of SLE-prone mice. These data show that B6.SLE mice develop defects in glucose homeostasis even when fed a low-fat diet and suggest that B cells may play a role in this metabolic dysfunction.


2009 ◽  
Vol 296 (5) ◽  
pp. E1164-E1171 ◽  
Author(s):  
Victoria J. Vieira ◽  
Rudy J. Valentine ◽  
Kenneth R. Wilund ◽  
Nirav Antao ◽  
Tracy Baynard ◽  
...  

Adipose tissue inflammation causes metabolic disturbances, including insulin resistance and hepatic steatosis. Exercise training (EX) may decrease adipose tissue inflammation, thereby ameliorating such disturbances, even in the absence of fat loss. The purpose of this study was to 1) compare the effects of low-fat diet (LFD), EX, and their combination on inflammation, insulin resistance, and hepatic steatosis in high-fat diet-induced obese mice and 2) determine the effect of intervention duration (i.e., 6 vs. 12 wk). C57BL/6 mice ( n = 109) fed a 45% fat diet (HFD) for 6 wk were randomly assigned to an EX (treadmill: 5 days/wk, 6 or 12 wk, 40 min/day, 65–70% V̇o2max) or sedentary (SED) group. Mice remained on HFD or were placed on a 10% fat diet (LFD) for 6 or 12 wk. Following interventions, fat pads were weighed and expressed relative to body weight; hepatic steatosis was assessed by total liver triglyceride and insulin resistance by HOMA-IR and glucose AUC. RT-PCR was used to determine adipose gene expression of MCP-1, F4/80, TNF-α, and leptin. By 12 wk, MCP-1, F4/80, and TNF-α mRNA were reduced by EX and LFD. Exercise ( P = 0.02), adiposity ( P = 0.03), and adipose F4/80 ( P = 0.02) predicted reductions in HOMA-IR ( r2 = 0.75, P < 0.001); only adiposity ( P = 0.04) predicted improvements in hepatic steatosis ( r2 = 0.51, P < 0.001). Compared with LFD, EX attenuated increases in adiposity, hepatic steatosis, and adipose MCP-1 expression from 6 to 12 wk. There are unique metabolic consequences of a sedentary lifestyle and HFD that are most evident long term, highlighting the importance of both EX and LFD in preventing obesity-related metabolic disturbances.


2020 ◽  
Vol 295 (51) ◽  
pp. 17535-17548
Author(s):  
Xanthe A. M. H. van Dierendonck ◽  
Tiphaine Sancerni ◽  
Marie-Clotilde Alves-Guerra ◽  
Rinke Stienstra

The development of a chronic, low-grade inflammation originating from adipose tissue in obese subjects is widely recognized to induce insulin resistance, leading to the development of type 2 diabetes. The adipose tissue microenvironment drives specific metabolic reprogramming of adipose tissue macrophages, contributing to the induction of tissue inflammation. Uncoupling protein 2 (UCP2), a mitochondrial anion carrier, is thought to separately modulate inflammatory and metabolic processes in macrophages and is up-regulated in macrophages in the context of obesity and diabetes. Here, we investigate the role of UCP2 in macrophage activation in the context of obesity-induced adipose tissue inflammation and insulin resistance. Using a myeloid-specific knockout of UCP2 (Ucp2ΔLysM), we found that UCP2 deficiency significantly increases glycolysis and oxidative respiration, both unstimulated and after inflammatory conditions. Strikingly, fatty acid loading abolished the metabolic differences between Ucp2ΔLysM macrophages and their floxed controls. Furthermore, Ucp2ΔLysM macrophages show attenuated pro-inflammatory responses toward Toll-like receptor-2 and -4 stimulation. To test the relevance of macrophage-specific Ucp2 deletion in vivo, Ucp2ΔLysM and Ucp2fl/fl mice were rendered obese and insulin resistant through high-fat feeding. Although no differences in adipose tissue inflammation or insulin resistance was found between the two genotypes, adipose tissue macrophages isolated from diet-induced obese Ucp2ΔLysM mice showed decreased TNFα secretion after ex vivo lipopolysaccharide stimulation compared with their Ucp2fl/fl littermates. Together, these results demonstrate that although UCP2 regulates both metabolism and the inflammatory response of macrophages, its activity is not crucial in shaping macrophage activation in the adipose tissue during obesity-induced insulin resistance.


2010 ◽  
Vol 299 (2) ◽  
pp. E215-E224 ◽  
Author(s):  
Nina Brandt ◽  
Katrien De Bock ◽  
Erik A. Richter ◽  
Peter Hespel

Excess energy intake via a palatable low-fat diet (cafeteria diet) is known to induce obesity and glucose intolerance in rats. However, the molecular mechanisms behind this adaptation are not known, and it is also not known whether exercise training can reverse it. Male Wistar rats were assigned to 12-wk intervention groups: chow-fed controls (CON), cafeteria diet (CAF), and cafeteria diet plus swimming exercise during the last 4 wk (CAFTR). CAF feeding led to increased body weight (16%, P < 0.01) and increased plasma glucose ( P < 0.05) and insulin levels ( P < 0.01) during an IVGTT, which was counteracted by training. In the perfused hindlimb, insulin-stimulated glucose transport in red gastrocnemius muscle was completely abolished in CAF and rescued by exercise training. Apart from a tendency toward an ∼20% reduction in both basal and insulin-stimulated Akt Ser473 phosphorylation ( P = 0.051) in the CAF group, there were no differences in insulin signaling (IR Tyr1150/1151, PI 3-kinase activity, Akt Thr308, TBC1D4 Thr642, GSK3-α/β Ser21/9) or changes in AMPKα1 or -α2, GLUT4, Munc18c, or syntaxin 4 protein expression or in phosphorylation of AMPK Thr172 among the groups. In conclusion, surplus energy intake of a palatable but low-fat cafeteria diet resulted in obesity and insulin resistance that was rescued by exercise training. Interestingly, insulin resistance was not accompanied by major defects in the insulin-signaling cascade or in altered AMPK expression or phosphorylation. Thus, compared with previous studies of high-fat feeding, where insulin signaling is significantly impaired, the mechanism by which CAF diet induces insulin resistance seems different.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1699-1699
Author(s):  
Yanwen Wang ◽  
Sandhya Nair ◽  
Jacques Gagnon

Abstract Objectives The present study was designed to examine the effect of herring milt dry powder (HMDP) on glucose homeostasis and related metabolic phenotypes and compare its efficacy with herring milt protein hydrolysate (HMPH) in diet-induced obese and insulin resistant mice. Methods Male C57BL/6 J mice were pretreated with a high-fat diet for 7 weeks were divided into 3 groups where one group continued on the high-fat diet and used as the obese and insulin resistant control (HFC) and the other two groups were fed a modified HFC diet where 70% of casein was replaced with an equal percentage of protein derived from HMDP or HMPH. A group of mice fed a low-fat diet all the time was used as the normal or low-fat control (LFC). Body weight was obtained weekly and food intake was recorded daily. Semi-fating (4–6 hr) blood glucose was measured every other week using a glucometer using the blood from tail vein. Oral glucose tolerance was measured twice during weeks 5 and 9, respectively, and insulin tolerance was determined during week 7 of the treatment. At the end of the experiment, serum was obtained following overnight fasting for the measurement of fasting insulin, leptin, free fatty acids and lipids as well as other glucose metabolism-related biomarkers. Results During the 9-week treatment period, mice on the high-fat diet maintained significantly higher body weight and semi-fasting blood glucose levels and exhibited impaired oral glucose tolerance and insulin resistance relative to mice on the low-fat diet. At the end of the study, the analysis of fasting blood samples revealed that mice on the high-fat diet had increases in serum insulin, leptin, free fatty acids and cholesterol levels. Mice fed the high-fat diet also showed an increase in insulin resistance index and a decrease in β-cell function index. Compared to mice on the high-fat diet, the 70% replacement of dietary casein with an equal percentage of protein derived from HMDP or HMPH reversed or markedly improved these parameters, and HMDP and HMPH showed similar effects. Conclusions The results demonstrate that replacing dietary casein with the same amount of protein derived from either HMDP or HMPH prevents and improves high-fat-diet-induced obesity and insulin resistance. Funding Sources Atlantic Canada Opportunity Agency through the Atlantic Innovation Fund grant (no. 193,594) and National Research Council of Canada – NHP program.


2016 ◽  
Vol 310 (11) ◽  
pp. E886-E899 ◽  
Author(s):  
Pia Kiilerich ◽  
Lene Secher Myrmel ◽  
Even Fjære ◽  
Qin Hao ◽  
Floor Hugenholtz ◽  
...  

Female C57BL/6J mice were fed a regular low-fat diet or high-fat diets combined with either high or low protein-to-sucrose ratios during their entire lifespan to examine the long-term effects on obesity development, gut microbiota, and survival. Intake of a high-fat diet with a low protein/sucrose ratio precipitated obesity and reduced survival relative to mice fed a low-fat diet. By contrast, intake of a high-fat diet with a high protein/sucrose ratio attenuated lifelong weight gain and adipose tissue expansion, and survival was not significantly altered relative to low-fat-fed mice. Our findings support the notion that reduced survival in response to high-fat/high-sucrose feeding is linked to obesity development. Digital gene expression analyses, further validated by qPCR, demonstrated that the protein/sucrose ratio modulated global gene expression over time in liver and adipose tissue, affecting pathways related to metabolism and inflammation. Analysis of fecal bacterial DNA using the Mouse Intestinal Tract Chip revealed significant changes in the composition of the gut microbiota in relation to host age and dietary fat content, but not the protein/sucrose ratio. Accordingly, dietary fat rather than the protein/sucrose ratio or adiposity is a major driver shaping the gut microbiota, whereas the effect of a high-fat diet on survival is dependent on the protein/sucrose ratio.


Sign in / Sign up

Export Citation Format

Share Document