scholarly journals Neurohumoral Cardiac Regulation: Optogenetics Gets Into the Groove

2021 ◽  
Vol 12 ◽  
Author(s):  
Arianna Scalco ◽  
Nicola Moro ◽  
Marco Mongillo ◽  
Tania Zaglia

The cardiac autonomic nervous system (ANS) is the main modulator of heart function, adapting contraction force, and rate to the continuous variations of intrinsic and extrinsic environmental conditions. While the parasympathetic branch dominates during rest-and-digest sympathetic neuron (SN) activation ensures the rapid, efficient, and repeatable increase of heart performance, e.g., during the “fight-or-flight response.” Although the key role of the nervous system in cardiac homeostasis was evident to the eyes of physiologists and cardiologists, the degree of cardiac innervation, and the complexity of its circuits has remained underestimated for too long. In addition, the mechanisms allowing elevated efficiency and precision of neurogenic control of heart function have somehow lingered in the dark. This can be ascribed to the absence of methods adequate to study complex cardiac electric circuits in the unceasingly moving heart. An increasing number of studies adds to the scenario the evidence of an intracardiac neuron system, which, together with the autonomic components, define a little brain inside the heart, in fervent dialogue with the central nervous system (CNS). The advent of optogenetics, allowing control the activity of excitable cells with cell specificity, spatial selectivity, and temporal resolution, has allowed to shed light on basic neuro-cardiology. This review describes how optogenetics, which has extensively been used to interrogate the circuits of the CNS, has been applied to untangle the knots of heart innervation, unveiling the cellular mechanisms of neurogenic control of heart function, in physiology and pathology, as well as those participating to brain–heart communication, back and forth. We discuss existing literature, providing a comprehensive view of the advancement in the understanding of the mechanisms of neurogenic heart control. In addition, we weigh the limits and potential of optogenetics in basic and applied research in neuro-cardiology.

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1453
Author(s):  
Joaquín Martí-Clúa

The synthetic halogenated pyrimidine analog, 5-bromo-2′-deoxyuridine (BrdU), is a marker of DNA synthesis. This exogenous nucleoside has generated important insights into the cellular mechanisms of the central nervous system development in a variety of animals including insects, birds, and mammals. Despite this, the detrimental effects of the incorporation of BrdU into DNA on proliferation and viability of different types of cells has been frequently neglected. This review will summarize and present the effects of a pulse of BrdU, at doses ranging from 25 to 300 µg/g, or repeated injections. The latter, following the method of the progressively delayed labeling comprehensive procedure. The prenatal and perinatal development of the cerebellum are studied. These current data have implications for the interpretation of the results obtained by this marker as an index of the generation, migration, and settled pattern of neurons in the developing central nervous system. Caution should be exercised when interpreting the results obtained using BrdU. This is particularly important when high or repeated doses of this agent are injected. I hope that this review sheds light on the effects of this toxic maker. It may be used as a reference for toxicologists and neurobiologists given the broad use of 5-bromo-2′-deoxyuridine to label dividing cells.


Author(s):  
Andreia Fuentes Santos ◽  
◽  
Marilia Moraes Queiroz Souza ◽  
Karoline Bach Pauli ◽  
Gustavo Ratti da Silva ◽  
...  

Bacopa monnieri(L.) Wettst. (Plantaginaceae), also known as Brahmi, has been used to improve cognitive processes and intellectual functions that are related to the preservation of memory. The objective of this research is to review the ethnobotanical applications, phytochemical composition, toxicity and activity of B. monnieriin the central nervous system. It reviewed articles on B. monnieriusing Google Scholar, SciELO, Science Direct, Lilacs, Medline, and PubMed. Saponins are the main compounds in extracts of B. monnieri. Pharmacological studies showed that B. monnieriimproves learning and memory and presents biological effects against Alzheimer’s disease, Parkinson’s disease, epilepsy, and schizophrenia. No preclinical acute toxicity was reported. However, gastrointestinal side effects were reported in some healthy elderly individuals. Most studies with B. monnierihave been preclinical evaluations of cellular mechanisms in the central nervous system and further translational clinical research needs to be performed to evaluate the safety and efficacy of the plant.


2008 ◽  
Vol 8 ◽  
pp. 757-761 ◽  
Author(s):  
Pierre A. Guertin

Learning and memory traditionally have been associated with cellular processes occurring in a specialized region of the brain called the hippocampus. However, recent data have provided strong evidence to suggest that comparable processes are also expressed in the spinal cord. Experiments performed mainly in spinal cord–transected animals have reported that, indeed, spinal-mediated functions, such as the stretch or flexion reflex, pain signaling, micturition, or locomotion, may undergo plasticity changes associated with partial functional recovery that occur spontaneously or conditionally. Many of the underlying cellular mechanisms strikingly resemble those found in the hippocampus. This mini-review reports, mainly, animal data that support the idea that other areas of the central nervous system, such as the spinal cord, can also learn and remember.


2019 ◽  
Vol 20 (10) ◽  
pp. 2506 ◽  
Author(s):  
Maurizio Cammalleri ◽  
Paola Bagnoli ◽  
Albertino Bigiani

Neural inhibition plays a key role in determining the specific computational tasks of different brain circuitries. This functional “braking” activity is provided by inhibitory interneurons that use different neurochemicals for signaling. One of these substances, somatostatin, is found in several neural networks, raising questions about the significance of its widespread occurrence and usage. Here, we address this issue by analyzing the somatostatinergic system in two regions of the central nervous system: the retina and the hippocampus. By comparing the available information on these structures, we identify common motifs in the action of somatostatin that may explain its involvement in such diverse circuitries. The emerging concept is that somatostatin-based signaling, through conserved molecular and cellular mechanisms, allows neural networks to operate correctly.


2014 ◽  
Vol 13 (3) ◽  
pp. 299-312 ◽  
Author(s):  
M.H. van Coevorden-Hameete ◽  
E. de Graaff ◽  
M.J. Titulaer ◽  
C.C. Hoogenraad ◽  
P.A.E. Sillevis Smitt

2003 ◽  
Vol 95 (3) ◽  
pp. 883-909 ◽  
Author(s):  
Jay B. Dean ◽  
Daniel K. Mulkey ◽  
Alfredo J. Garcia ◽  
Robert W. Putnam ◽  
Richard A. Henderson

As ambient pressure increases, hydrostatic compression of the central nervous system, combined with increasing levels of inspired Po2, Pco2, and N2partial pressure, has deleterious effects on neuronal function, resulting in O2toxicity, CO2toxicity, N2narcosis, and high-pressure nervous syndrome. The cellular mechanisms responsible for each disorder have been difficult to study by using classic in vitro electrophysiological methods, due to the physical barrier imposed by the sealed pressure chamber and mechanical disturbances during tissue compression. Improved chamber designs and methods have made such experiments feasible in mammalian neurons, especially at ambient pressures <5 atmospheres absolute (ATA). Here we summarize these methods, the physiologically relevant test pressures, potential research applications, and results of previous research, focusing on the significance of electrophysiological studies at <5 ATA. Intracellular recordings and tissue Po2measurements in slices of rat brain demonstrate how to differentiate the neuronal effects of increased gas pressures from pressure per se. Examples also highlight the use of hyperoxia (≤3 ATA O2) as a model for studying the cellular mechanisms of oxidative stress in the mammalian central nervous system.


1996 ◽  
Vol 8 (2) ◽  
pp. 109-123 ◽  
Author(s):  
Peter G Hepper ◽  
Leo R Leader

One aim of obstetric practice is to ensure the wellbeing of the fetus. This is by no means an easy task and recent years have seen the development of a variety of tests, with varying degrees of success, to evaluate fetal health.Fetal wellbeing may be assessed at a variety of levels: genetic/cellular, physical/structural or functional. Ideally the evaluation of fetal health should provide information about the functional outcome of any particular condition, especially the performance of the central nervous system. Current tests may not do this. Thus, whilst tests of the fetal chromosomal or genetic constitution may determine the presence of particular genetic/chromosomal conditions, they may not predict functional outcome especially the functioning of the cerebral cortices, the ultimate arbiter of excellence in man. For example, Down's syndrome may be accurately diagnosed by analysis of fetal cells to detect the presence of Trisomy 21 but this in itself provides little information on the subsequent functional performance of the individual. The development of tests of fetal heart function such as antenatal cardiotocography have provided a means of assessing cardiac function and, to a certain extent, the functioning of parts of the autonomic nervous system. However such tests can only indirectly assess cortical function.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sarah K. Lotz ◽  
Britanie M. Blackhurst ◽  
Katie L. Reagin ◽  
Kristen E. Funk

Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, comprise a family of disorders characterized by progressive loss of nervous system function. Neuroinflammation is increasingly recognized to be associated with many neurodegenerative diseases but whether it is a cause or consequence of the disease process is unclear. Of growing interest is the role of microbial infections in inciting degenerative neuroinflammatory responses and genetic factors that may regulate those responses. Microbial infections cause inflammation within the central nervous system through activation of brain-resident immune cells and infiltration of peripheral immune cells. These responses are necessary to protect the brain from lethal infections but may also induce neuropathological changes that lead to neurodegeneration. This review discusses the molecular and cellular mechanisms through which microbial infections may increase susceptibility to neurodegenerative diseases. Elucidating these mechanisms is critical for developing targeted therapeutic approaches that prevent the onset and slow the progression of neurodegenerative diseases.


1995 ◽  
Vol XXVII (3-4) ◽  
pp. 66-69
Author(s):  
A. N. Kudrin ◽  
Т. A. Zatsepilova ◽  
V. V. Ryazhenov

Fundamental discoveries in the field of physiology, histology, pharmacology were made by outstanding talented scientists of Russia since the middle of the 19th century. They had priority in studies on the role of the central nervous system in the innervation of the heart, the morphological structure of the peripheral part of the autonomic nervous system of the heart and other organons, as well as in studies of the effect of pharmacological substances - atropine, muscarine, nicotine, chloroform on heart function.


Sign in / Sign up

Export Citation Format

Share Document