scholarly journals Molecular and Cellular Mechanisms Underlying Somatostatin-Based Signaling in Two Model Neural Networks, the Retina and the Hippocampus

2019 ◽  
Vol 20 (10) ◽  
pp. 2506 ◽  
Author(s):  
Maurizio Cammalleri ◽  
Paola Bagnoli ◽  
Albertino Bigiani

Neural inhibition plays a key role in determining the specific computational tasks of different brain circuitries. This functional “braking” activity is provided by inhibitory interneurons that use different neurochemicals for signaling. One of these substances, somatostatin, is found in several neural networks, raising questions about the significance of its widespread occurrence and usage. Here, we address this issue by analyzing the somatostatinergic system in two regions of the central nervous system: the retina and the hippocampus. By comparing the available information on these structures, we identify common motifs in the action of somatostatin that may explain its involvement in such diverse circuitries. The emerging concept is that somatostatin-based signaling, through conserved molecular and cellular mechanisms, allows neural networks to operate correctly.

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1453
Author(s):  
Joaquín Martí-Clúa

The synthetic halogenated pyrimidine analog, 5-bromo-2′-deoxyuridine (BrdU), is a marker of DNA synthesis. This exogenous nucleoside has generated important insights into the cellular mechanisms of the central nervous system development in a variety of animals including insects, birds, and mammals. Despite this, the detrimental effects of the incorporation of BrdU into DNA on proliferation and viability of different types of cells has been frequently neglected. This review will summarize and present the effects of a pulse of BrdU, at doses ranging from 25 to 300 µg/g, or repeated injections. The latter, following the method of the progressively delayed labeling comprehensive procedure. The prenatal and perinatal development of the cerebellum are studied. These current data have implications for the interpretation of the results obtained by this marker as an index of the generation, migration, and settled pattern of neurons in the developing central nervous system. Caution should be exercised when interpreting the results obtained using BrdU. This is particularly important when high or repeated doses of this agent are injected. I hope that this review sheds light on the effects of this toxic maker. It may be used as a reference for toxicologists and neurobiologists given the broad use of 5-bromo-2′-deoxyuridine to label dividing cells.


2018 ◽  
Vol 98 (1) ◽  
pp. 239-389 ◽  
Author(s):  
Alexei Verkhratsky ◽  
Maiken Nedergaard

Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.


Author(s):  
Andreia Fuentes Santos ◽  
◽  
Marilia Moraes Queiroz Souza ◽  
Karoline Bach Pauli ◽  
Gustavo Ratti da Silva ◽  
...  

Bacopa monnieri(L.) Wettst. (Plantaginaceae), also known as Brahmi, has been used to improve cognitive processes and intellectual functions that are related to the preservation of memory. The objective of this research is to review the ethnobotanical applications, phytochemical composition, toxicity and activity of B. monnieriin the central nervous system. It reviewed articles on B. monnieriusing Google Scholar, SciELO, Science Direct, Lilacs, Medline, and PubMed. Saponins are the main compounds in extracts of B. monnieri. Pharmacological studies showed that B. monnieriimproves learning and memory and presents biological effects against Alzheimer’s disease, Parkinson’s disease, epilepsy, and schizophrenia. No preclinical acute toxicity was reported. However, gastrointestinal side effects were reported in some healthy elderly individuals. Most studies with B. monnierihave been preclinical evaluations of cellular mechanisms in the central nervous system and further translational clinical research needs to be performed to evaluate the safety and efficacy of the plant.


2008 ◽  
Vol 8 ◽  
pp. 757-761 ◽  
Author(s):  
Pierre A. Guertin

Learning and memory traditionally have been associated with cellular processes occurring in a specialized region of the brain called the hippocampus. However, recent data have provided strong evidence to suggest that comparable processes are also expressed in the spinal cord. Experiments performed mainly in spinal cord–transected animals have reported that, indeed, spinal-mediated functions, such as the stretch or flexion reflex, pain signaling, micturition, or locomotion, may undergo plasticity changes associated with partial functional recovery that occur spontaneously or conditionally. Many of the underlying cellular mechanisms strikingly resemble those found in the hippocampus. This mini-review reports, mainly, animal data that support the idea that other areas of the central nervous system, such as the spinal cord, can also learn and remember.


2014 ◽  
Vol 13 (3) ◽  
pp. 299-312 ◽  
Author(s):  
M.H. van Coevorden-Hameete ◽  
E. de Graaff ◽  
M.J. Titulaer ◽  
C.C. Hoogenraad ◽  
P.A.E. Sillevis Smitt

2003 ◽  
Vol 95 (3) ◽  
pp. 883-909 ◽  
Author(s):  
Jay B. Dean ◽  
Daniel K. Mulkey ◽  
Alfredo J. Garcia ◽  
Robert W. Putnam ◽  
Richard A. Henderson

As ambient pressure increases, hydrostatic compression of the central nervous system, combined with increasing levels of inspired Po2, Pco2, and N2partial pressure, has deleterious effects on neuronal function, resulting in O2toxicity, CO2toxicity, N2narcosis, and high-pressure nervous syndrome. The cellular mechanisms responsible for each disorder have been difficult to study by using classic in vitro electrophysiological methods, due to the physical barrier imposed by the sealed pressure chamber and mechanical disturbances during tissue compression. Improved chamber designs and methods have made such experiments feasible in mammalian neurons, especially at ambient pressures <5 atmospheres absolute (ATA). Here we summarize these methods, the physiologically relevant test pressures, potential research applications, and results of previous research, focusing on the significance of electrophysiological studies at <5 ATA. Intracellular recordings and tissue Po2measurements in slices of rat brain demonstrate how to differentiate the neuronal effects of increased gas pressures from pressure per se. Examples also highlight the use of hyperoxia (≤3 ATA O2) as a model for studying the cellular mechanisms of oxidative stress in the mammalian central nervous system.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
I-Chen Li ◽  
Li-Ya Lee ◽  
Tsai-Teng Tzeng ◽  
Wan-Ping Chen ◽  
Yen-Po Chen ◽  
...  

Hericium erinaceus, an ideal culinary-medicinal mushroom, has become a well-established candidate in promoting positive brain and nerve health-related activities by inducing the nerve growth factor from its bioactive ingredient. Among its active compounds, only erinacine A has confirmed pharmacological actions in the central nervous system in rats. Hence, this review has summarized the available information on the neurohealth properties ofH. erinaceusmycelia enriched with erinacines, which may contribute to further research on the therapeutic roles of these mycelia. The safety of this mushroom has also been discussed. Although it has been difficult to extrapolate thein vivostudies to clinical situations, preclinical studies have shown that there can be improvements in ischemic stroke, Parkinson’s disease, Alzheimer’s disease, and depression ifH. erinaceusmycelia enriched with erinacines are included in daily meals.


Development ◽  
1957 ◽  
Vol 5 (4) ◽  
pp. 428-437
Author(s):  
J. P. M. Bensted ◽  
J. Dobbing ◽  
R. S. Morgan ◽  
R. T. W. Reid ◽  
G. Payling Wright

The widespread occurrence of the demyelinating diseases of the central nervous system makes the study of the events that accompany normal myelin formation one of major significance in neuropathology. In the latter part of the last century the earlier stages in the development of the nervous system in embryos were studied in detail by many investigators, but since then, in spite of its evident importance, this aspect of embryogenesis has attracted little attention from embryologists and neurohistologists. In view of the advances now being made in the chemistry of the nervous system, the time seems opportune to return to the problem of myelinogenesis with the hope of bringing together some of the many important relevant observations in neural morphology and biochemistry. In contrast to most earlier studies, the present one is restricted to some of the more outstanding features in the development of the neuroglia and myelin in the cervical spinal cord of the chicken embryo during the later stages of incubation.


Sign in / Sign up

Export Citation Format

Share Document