scholarly journals Deciphering Phosphate Deficiency-Mediated Temporal Effects on Different Root Traits in Rice Grown in a Modified Hydroponic System

2016 ◽  
Vol 7 ◽  
Author(s):  
Manisha Negi ◽  
Raghavendrarao Sanagala ◽  
Vandna Rai ◽  
Ajay Jain
Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2781
Author(s):  
Shuo Liu ◽  
Naheeda Begum ◽  
Tingting An ◽  
Tuanjie Zhao ◽  
Bingcheng Xu ◽  
...  

Phenotypic variation and correlations among root traits form the basis for selecting and breeding soybean varieties with efficient access to water and nutrients and better adaptation to abiotic stresses. Therefore, it is important to develop a simple and consistent system to study root traits in soybean. In this study, we adopted the semi-hydroponic system to investigate the variability in root morphological traits of 171 soybean genotypes popularized in the Yangtze and Huaihe River regions, eastern China. Highly diverse phenotypes were observed: shoot height (18.7–86.7 cm per plant with a median of 52.3 cm); total root length (208–1663 cm per plant with a median of 885 cm); and root mass (dry weight) (19.4–251 mg per plant with a median of 124 mg). Both total root length and root mass exhibited significant positive correlation with shoot mass (p ≤ 0.05), indicating their relationship with plant growth and adaptation strategies. The nine selected traits contributed to one of the two principal components (eigenvalues > 1), accounting for 78.9% of the total genotypic variation. Agglomerative hierarchical clustering analysis separated the 171 genotypes into five major groups based on these root traits. Three selected genotypes with contrasting root systems were validated in soil-filled rhizoboxes (1.5 m deep) until maturity. Consistent ranking of the genotypes in some important root traits at various growth stages between the two experiments indicates the reliability of the semi-hydroponic system in phenotyping root trait variability at the early growth stage in soybean germplasms.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lu Zheng ◽  
Mohammad Rezaul Karim ◽  
Yin-Gang Hu ◽  
Renfang Shen ◽  
Ping Lan

Abstract Background Phosphate (Pi) deficiency severely affects crop growth and productivity, including wheat, therefore it is necessary to develop cultivars with enhanced Pi-deficiency tolerance. However, the underlying mechanism of Pi-deficiency tolerance in wheat is still elusive. Two contrasting wheat cultivars, low-Pi tolerant Kenong199 (KN199) and low-Pi sensitive Chinese Spring (CS) were used to reveal adaptations in response to Pi deficiency at the morphological, physiological, metabolic, and molecular levels. Results KN199 was more tolerant to Pi deficiency than CS with significantly increased root biomass and R/S ratio. Root traits, the total root length, total root surface area, and total root volume, were remarkably enhanced by Pi deficiency in KN199. The shoot total P and soluble Pi concentrations of KN199 were significantly higher than those of CS, but not in roots. In KN199, high Pi level in shoots is a higher priority than that in roots under Pi deficiency. It was probably due to differentially regulation in the miR399-mediated signaling network between the shoots of the two cultivars. The Pi deficiency-induced root architecture adaptation in KN199 was attributed to the regulation of the hormone-mediated signaling (ethylene, gibberellin, and jasmonates). The expression of genes associated with root development and Pi uptake was enhanced in KN199. Some primary metabolites (amino acids and organic acids) were significantly accumulated in roots of KN199 under Pi deficiency. Conclusions The low-Pi tolerant wheat cultivar KN199 possessed greater morphological and primary metabolic adaptations in roots than CS under Pi deficiency. The adaption and the underlying molecular mechanisms in wheat provide a better understanding of the Pi-deficiency tolerance and the strategies for improving Pi efficiency in wheat.


2021 ◽  
Vol 13 (22) ◽  
pp. 12778
Author(s):  
Johannes Timaeus ◽  
Odette Denise Weedon ◽  
Maria Renate Finckh

To increase the resilience of agroecological farming systems against weeds, pests, and pathogens, evolutionary breeding of diversified crop populations is highly promising. A fundamental challenge in population breeding is to combine effective selection and breeding progress while maintaining intraspecific diversity. A hydroponic system was tested for its suitability to non-destructively select root traits on a population level in order to achieve genetic gain and maintain diversity. Forty wheat progenies were selected for long seminal root length (SRL) and 40 for short SRL from a wheat composite cross population grown in a hydroponic system. Wheat progenies were multiplied, and a subset evaluated again in a hydroponic system. Preliminary tests in soil and competition experiments with a model weed were performed. The hydroponic selection for long SRL led to an increase of SRL by 1.6 cm (11.6%) in a single generation. Heritability for selection of SRL was 0.59. Selecting for short SRL had no effect. The preliminary soil-based test confirmed increased shoot length but not increased SRL. Preliminary competition experiments point to slightly improved competitive response of wheat progenies but no improved competitive effect on mustard. These results indicate a heritable selection effect for SRL on a population level, combining genetic gain and intraspecific diversity.


2021 ◽  
Author(s):  
Lu Zheng ◽  
Mohammad Rezaul Karim ◽  
Yin-Gang Hu ◽  
Renfang Shen ◽  
Ping Lan

Abstract Background Phosphate (Pi) deficiency severely affects crop growth and productivity, including wheat, therefore it is necessary to develop cultivars with enhanced Pi-deficiency tolerance. However, the underlying mechanism of Pi-deficiency tolerance in wheat is still elusive. Two contrasting wheat cultivars, low-Pi tolerant Kenong199 (KN199) and low-Pi sensitive Chinese Spring (CS) were used to reveal adaptations in response to Pi deficiency at the morphological, physiological, metabolic, and molecular levels. Results KN199 was more tolerant to Pi deficiency than CS with significantly increased root biomass and R/S ratio. Root traits, the total root length, total surface area, and total volume, were remarkably enhanced by Pi deficiency in KN199. The shoot soluble Pi and total P concentrations of KN199 were all significantly higher than these of CS, but not in roots. In KN199, high Pi level in shoots is a higher priority than that in roots under Pi deficiency. It was probably due to differentially regulation in the miR399-mediated signaling network between the shoots of the two cultivars. The Pi deficiency-induced root architecture adaptation in KN199 was attributed to the regulation of the hormone-mediated signaling (ethylene, gibberellin, and jasmonates). The expression of genes associated with root development and Pi uptake was enhanced in KN199. Some primary metabolites (amino acids and organic acids) were significantly accumulated in roots of KN199 under Pi deficiency. Conclusions The low-Pi tolerant wheat cultivar KN199 possessed greater morphological and primary metabolic adaptations in roots than CS under Pi deficiency. The adaption and the underlying molecular mechanism in wheat provide a better understanding of the Pi-deficiency tolerance and the strategies for improving Pi efficiency in wheat.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Suzanne Donn ◽  
Sally Power ◽  
Kirk Barnett ◽  
Jeff Powell

Future climate scenarios predict changes in rainfall regimes. These changes are expected to affect plants via effects on the expression of root traits associated with water and nutrient uptake. Associated microorganisms may also respond to these new precipitation regimes, either directly in response to changes in the soil environment or indirectly in response to altered root trait expression. We characterised arbuscular mycorrhizal (AM) fungal communities in an Australian grassland exposed to experimentally altered rainfall regimes. We used Illumina sequencing to assess the responses of AM fungal communities associated with four plant species sampled in different watering treatments and evaluated the extent to which shifts were associated with changes in root traits. We observed that altered rainfall regimes affected the composition but not the richness of the AM fungal communities, and we found distinctive communities in the increased rainfall treatment. We found no evidence of altered rainfall regime effects via changes in host physiology because none of the studied traits were affected by changes in rainfall. However, specific root length was observed to correlate with AM fungal richness, while concentrations of phosphorus and calcium in root tissue and the proportion of root length allocated to fine roots were correlated to community composition. Our study provides evidence that climate change and its effects on rainfall may influence AM fungal community assembly, as do plant traits related to plant nutrition and water uptake. We did not find evidence that host responses to altered rainfall drive AM fungal community assembly in this grassland ecosystem.


2013 ◽  
Vol 19 (2) ◽  
pp. 57-65
Author(s):  
MH Kabir ◽  
MM Islam ◽  
SN Begum ◽  
AC Manidas

A cross was made between high yielding salt susceptible BINA variety (Binadhan-5) with salt tolerant rice landrace (Harkuch) to identify salt tolerant rice lines. Thirty six F3 rice lines of Binadhan-5 x Harkuch were tested for salinity tolerance at the seedling stage in hydroponic system using nutrient solution. In F3 population, six lines were found as salt tolerant and 10 lines were moderately tolerant based on phenotypic screening at the seedling stage. Twelve SSR markers were used for parental survey and among them three polymorphic SSR markers viz., OSR34, RM443 and RM169 were selected to evaluate 26 F3 rice lines for salt tolerance. With respect to marker OSR34, 15 lines were identified as salt tolerant, 9 lines were susceptible and 2 lines were heterozygous. While RM443 identified 3 tolerant, 14 susceptible and 9 heterozygous rice lines. Eight tolerant, 11 susceptible and 7 heterozygous lines were identified with the marker RM169. Thus the tested markers could be efficiently used for tagging salt tolerant genes in marker-assisted breeding programme.DOI: http://dx.doi.org/10.3329/pa.v19i2.16929 Progress. Agric. 19(2): 57 - 65, 2008


2020 ◽  
Vol 635 ◽  
pp. 187-202
Author(s):  
T Brough ◽  
W Rayment ◽  
E Slooten ◽  
S Dawson

Many species of marine predators display defined hotspots in their distribution, although the reasons why this happens are not well understood in some species. Understanding whether hotspots are used for certain behaviours provides insights into the importance of these areas for the predators’ ecology and population viability. In this study, we investigated the spatiotemporal distribution of foraging behaviour in Hector’s dolphin Cephalorhynchus hectori, a small, endangered species from New Zealand. Passive acoustic monitoring of foraging ‘buzzes’ was carried out at 4 hotspots and 6 lower-use, ‘reference areas’, chosen randomly based on a previous density analysis of visual sightings. The distribution of buzzes was modelled among spatial locations and on 3 temporal scales (season, time of day, tidal state) with generalised additive mixed models using 82000 h of monitoring data. Foraging rates were significantly influenced by all 3 temporal effects, with substantial variation in the importance and nature of each effect among locations. The complexity of the temporal effects on foraging is likely due to the patchy nature of prey distributions and shows how foraging is highly variable at fine scales. Foraging rates were highest at the hotspots, suggesting that feeding opportunities shape fine-scale distribution in Hector’s dolphin. Foraging can be disrupted by anthropogenic influences. Thus, information from this study can be used to manage threats to this vital behaviour in the locations and at the times where it is most prevalent.


Sign in / Sign up

Export Citation Format

Share Document