scholarly journals A Vernalization Response in a Winter Safflower (Carthamus tinctorius) Involves the Upregulation of Homologs of FT, FUL, and MAF

2021 ◽  
Vol 12 ◽  
Author(s):  
Darren P. Cullerne ◽  
Siri Fjellheim ◽  
Andrew Spriggs ◽  
Andrew L. Eamens ◽  
Ben Trevaskis ◽  
...  

Safflower (Carthamus tinctorius) is a member of the Asteraceae family that is grown in temperate climates as an oil seed crop. Most commercially grown safflower varieties can be sown in late winter or early spring and flower rapidly in the absence of overwintering. There are winter-hardy safflower accessions that can be sown in autumn and survive over-wintering. Here, we show that a winter-hardy safflower possesses a vernalization response, whereby flowering is accelerated by exposing germinating seeds to prolonged cold. The impact of vernalization was quantitative, such that increasing the duration of cold treatment accelerated flowering to a greater extent, until the response was saturated after 2 weeks exposure to low-temperatures. To investigate the molecular-basis of the vernalization-response in safflower, transcriptome activity was compared and contrasted between vernalized versus non-vernalized plants, in both ‘winter hardy’ and ‘spring’ cultivars. These genome-wide expression analyses identified a small set of transcripts that are both differentially expressed following vernalization and that also have different expression levels in the spring versus winter safflowers. Four of these transcripts were quantitatively induced by vernalization in a winter hardy safflower but show high basal levels in spring safflower. Phylogenetic analyses confidently assigned that the nucleotide sequences of the four differentially expressed transcripts are related to FLOWERING LOCUS T (FT), FRUITFUL (FUL), and two genes within the MADS-like clade genes. Gene models were built for each of these sequences by assembling an improved safflower reference genome using PacBio-based long-read sequencing, covering 85% of the genome, with N50 at 594,000 bp in 3000 contigs. Possible evolutionary relationships between the vernalization response of safflower and those of other plants are discussed.

Author(s):  
Georg H. Niedrist ◽  
Miguel Cañedo-Argüelles ◽  
Sophie Cauvy-Fraunié

Abstract Human-induced (i.e., secondary) salinization affects aquatic biodiversity and ecosystem functioning worldwide. While agriculture or resource extraction are the main drivers of secondary salinization in arid and semi-arid regions of the world, the application of deicing road salt in winter can be an important source of salts entering freshwaters in cold regions. Alpine rivers are probably affected by salinization, especially in highly populated mountain regions, although this remains to be explored. In this study, we analyzed multi-year conductance time series from four rivers in the European Alps and demonstrated that the application of deicing road salt is linked to peaking rivers’ salinity levels during late winter/early spring. Especially in small catchments with more urban surfaces close to the rivers, conductance increased during constant low-flow periods in late winter and was less correlated with discharge than in summer. Thus, our results suggest that small rivers highly connected to urban infrastructures are prone to considerable salinity peaks during late winter/early spring. Given the low natural level of salinities in Alpine rivers, the aquatic biodiversity might be significantly affected by the recorded changes in conductance, with potential consequences on ecosystem functioning. Thereby, we urge the research community to assess the impact of secondary salinization in Alpine rivers and call for an implementation of management practices to prevent the degradation of these pristine and valuable ecosystems.


2015 ◽  
Vol 63 (5) ◽  
pp. 415 ◽  
Author(s):  
K. A. Chia ◽  
J. M. Koch ◽  
R. Sadler ◽  
S. R. Turner

Persoonia longifolia R.Br. is a common understorey tree that is difficult to re-establish following bauxite extraction and land restoration in parts of the jarrah forest of south-western Western Australia. To improve restoration outcomes for P. longifolia, understanding its phenology is vital for developing methods for returning this plant to rehabilitated areas. The present study investigated in detail different aspects of the phenology of P. longifolia over a 3-year-period. Most vegetative growth occurred during the summer months and flowering and fruiting occurred concurrently. Fruit matured from July through to September, at which time these dropped to the forest floor. Germination occurred in late winter–early spring from fruit that was at least 1-year old, with poor seedling survival in natural bush (<10%) during the first 12 months. Following fire, P. longifolia plants resprouted prolifically in the next growing season, although there was very little fruit production in the first year following fire. Fruit was not produced until at least the second year following a fire, and when dispersed, required at least another year in the soil seed bank before germination commenced (i.e. 3 years post-fire). Results from the present study will improve restoration outcomes for this species, by providing guidance on better seed-collection strategies and baseline information concerning growth rates under natural conditions that can then be used to assess performance of this species in restored environments.


Plant Disease ◽  
2020 ◽  
Vol 104 (6) ◽  
pp. 1744-1750 ◽  
Author(s):  
Wu Zhang ◽  
Ulrike Damm ◽  
Pedro W. Crous ◽  
Johannes Z. Groenewald ◽  
Xueli Niu ◽  
...  

Carpetgrass (Axonopus compressus) is a creeping, stoloniferous, perennial warm-season grass that is adapted to humid tropical and subtropical climates. Recently, outbreaks of anthracnose disease of A. compressus caused by an unidentified Colletotrichum sp. were observed in the Hainan and Guangdong provinces in southern China. In late winter and early spring, the disease incidence reached 100% in some badly infected lawns. Under high-moisture conditions, the crowns and oldest leaf sheaths of the majority of the plants became necrotic, which led to whole lawns turning reddish brown. Pathogenicity was confirmed by inoculating uninfected A. compressus plants with a conidial suspension of the Colletotrichum sp. isolated from diseased Axonopus plants. Phylogenetic analyses of the combined internal transcribed spacer, Sod2, Apn2, and Apn2/Mat1 sequences revealed the pathogen to be a novel species of the Colletotrichum graminicola species complex. Microscopic examination showed that the species was also morphologically distinct from related Colletotrichum species. As a result of the phylogenetic, morphological, and pathogenicity analyses, we propose the name Colletotrichum hainanense for this pathogen of A. compressus in southern China.


2020 ◽  
Vol 10 (14) ◽  
pp. 4733
Author(s):  
Carlos Sanz Saiz ◽  
Jesús Polo Martínez ◽  
Nuria Martín Chivelet

This work attempts to shed some light on the impact of organic soiling due to pollen on solar photovoltaic (PV) power generation. Apart from introducing several soiling-related pollen features, the previous works reporting soiling by pollen have been reviewed. Local observations from late winter to early spring showed that a rooftop PV system experienced both uniform and non-uniform soiling issues, which were mainly caused by pollen from nearby cypress specimens. In addition, this work publishes preliminary results regarding an artificial soiling test performed with pollen. In this test, soda lime float glass coupons were artificially soiled with fresh cypress pollen. A linear relationship was found between the pollen mass density (ρA) and the glass averaged transmittance (TAVE) for values up to 9.1 g/m2. In comparison with other artificial soiling tests performed with different soiling agents, the transmittance loss caused by pollen cypress deposition was relatively high and spectrally selective.


2002 ◽  
Vol 53 (11) ◽  
pp. 1203 ◽  
Author(s):  
F. R. McKenzie ◽  
J. L. Jacobs ◽  
G. Kearney

A 3-year grazing experiment determined the impact of multiple applications of different rates of nitrogen (N) fertiliser, applied over autumn and winter in 1997, 1998, and 1999, on perennial ryegrass (Lolium perenne)/white clover (Trifolium repens) tiller and growing point densities (stolon apices with at least 2 nodes). Annual pasture dry matter (DM) yields were also monitored. Four treatments were replicated 3 times in a randomised block design and included: 0 N (A); 3 applications of 25 kg N/ha (B); 3 applications of 50 kg N/ha (C); and 3 applications of 75 kg N/ha (D). Urea (46% N) was the N source. Grazing of treatment plots occurred at a pre-grazing herbage mass of 2200–2500 kg DM/ha.Over 3 years, N applications consistently increased annual pasture DM yields by 0.9–3.3 t/ha when a total of 75–225 kg N/ha was applied annually.Generally, treatments B, C, and D resulted in higher perennial ryegrass tiller densities than treatment A. An exception occurred from July 1998 in Year 2 to July 1999 in Year 3, when all perennial ryegrass densities were similar. Nitrogen fertiliser generally produced no consistent effect on white clover growing point density, with the exception of July–December in Year 2 when treatments B, C, and D resulted in lower growing point densities than treatment A. Clover growing point density decreased over the trial period irrespective of treatment. There were no N fertiliser effects on 'other' grasses and broadleaved weeds. 'Other' grasses (mainly winter grass, Poa annua) did, however, peak in density (up to 2500 tillers/m2) from July to September each year.Seasonally, the peak perennial ryegrass tiller density was similar each year and occurred during late winter–early spring (5450 tillers/m2 in July 1997; 6200 tillers/m2 in August 1998; 5400 tillers/m2 in July 1999). This was followed by a trough over midsummer (800 tillers/m2 in January 1998; 725 tillers/m2 in January 1999). White clover growing point density declined over 3 years. During this decline there were peaks in June 1997 (2650 growing points/m2), November 1997 (1600 growing points/m2), June 1998 (1250 growing points/m2), April 1999 (1050 growing points/m2), and November 1999 (850 growing points/m2). Troughs occurred in January 1998 (530 growing points/m2) and February 1999 (380 growing points/m2).It is concluded that although increasing applications of N increased annual pasture DM yields and generally increased perennial ryegrass tiller densities, with little effect on clover growing point densities, there is little to suggest that N fertiliser alone would enhance the persistence of these pasture species. Persistence is likely to be influenced by a combination of factors including grazing management and climatic effects, rather than N fertiliser alone.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Z. Y. Su ◽  
J. J. Powell ◽  
S. Gao ◽  
M. Zhou ◽  
C. Liu

Abstract Background Fusarium crown rot (FCR) is a chronic disease in cereal production worldwide. The impact of this disease is highly environmentally dependant and significant yield losses occur mainly in drought-affected crops. Results In the study reported here, we evaluated possible relationships between genes conferring FCR resistance and drought tolerance using two approaches. The first approach studied FCR induced differentially expressed genes (DEGs) targeting two barley and one wheat loci against a panel of genes curated from the literature based on known functions in drought tolerance. Of the 149 curated genes, 61.0% were responsive to FCR infection across the three loci. The second approach was a comparison of the global DEGs induced by FCR infection with the global transcriptomic responses under drought in wheat. This analysis found that approximately 48.0% of the DEGs detected one week following drought treatment and 74.4% of the DEGs detected three weeks following drought treatment were also differentially expressed between the susceptible and resistant isolines under FCR infection at one or more timepoints. As for the results from the first approach, the vast majority of common DEGs were downregulated under drought and expressed more highly in the resistant isoline than the sensitive isoline under FCR infection. Conclusions Results from this study suggest that the resistant isoline in wheat was experiencing less drought stress, which could contribute to the stronger defence response than the sensitive isoline. However, most of the genes induced by drought stress in barley were more highly expressed in the susceptible isolines than the resistant isolines under infection, indicating that genes conferring drought tolerance and FCR resistance may interact differently between these two crop species. Nevertheless, the strong relationship between FCR resistance and drought responsiveness provides further evidence indicating the possibility to enhance FCR resistance by manipulating genes conferring drought tolerance.


2021 ◽  
Vol 13 (6) ◽  
pp. 3518
Author(s):  
Xiaoyi Xing ◽  
Li Dong ◽  
Cecil Konijnendijk ◽  
Peiyao Hao ◽  
Shuxin Fan ◽  
...  

The spatial variation of poplars’ reproductive phenology in Beijing’s urban area has aggravated the threat of poplar fluff (cotton-like flying seeds) to public health. This research explored the impact of microclimate conditions on the reproductive phenology of female Populus tomentosa in Taoranting Park, a micro-scale green space in Beijing (range <1 km). The observed phenophases covered flowering, fruiting, and seed dispersal, and ENVI-MET was applied to simulate the effect of the microclimate on SGS (start day of the growing season). The results showed that a significant spatial variation in poplar reproductive phenology existed at the research site. The variation was significantly affected by the microclimate factors DMT (daily mean temperature) and DMH (daily mean heat transfer coefficient), with air temperature playing a primary role. Specifically, the phenology of flowering and fruiting phenophases (BBB, BF, FF, FS) was negatively correlated with DMT (−0.983 ≤ r ≤ −0.908, p <0.01) and positively correlated with DMH (0.769 ≤ r ≤ 0.864, p < 0.05). In contrast, DSD (duration of seed dispersal) showed a positive correlation with DMT (r = 0.946, p < 0.01) and a negative correlation with DMH (r = −0.922, p < 0.01). Based on the findings, the increase in air convection with lower air temperature and decrease in microclimate variation in green space can be an effective way to shorten the seed-flying duration to tackle poplar fluff pollution in Beijing’s early spring.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Constantinos G. Broustas ◽  
Axel J. Duval ◽  
Sally A. Amundson

AbstractAs a radiation biodosimetry tool, gene expression profiling is being developed using mouse and human peripheral blood models. The impact of dose, dose-rate, and radiation quality has been studied with the goal of predicting radiological tissue injury. In this study, we determined the impact of aging on the gene expression profile of blood from mice exposed to radiation. Young (2 mo) and old (21 mo) male mice were irradiated with 4 Gy x-rays, total RNA was isolated from whole blood 24 h later, and subjected to whole genome microarray analysis. Pathway analysis of differentially expressed genes revealed young mice responded to x-ray exposure by significantly upregulating pathways involved in apoptosis and phagocytosis, a process that eliminates apoptotic cells and preserves tissue homeostasis. In contrast, the functional annotation of senescence was overrepresented among differentially expressed genes from irradiated old mice without enrichment of phagocytosis pathways. Pathways associated with hematologic malignancies were enriched in irradiated old mice compared with irradiated young mice. The fibroblast growth factor signaling pathway was underrepresented in older mice under basal conditions. Similarly, brain-related functions were underrepresented in unirradiated old mice. Thus, age-dependent gene expression differences should be considered when developing gene signatures for use in radiation biodosimetry.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1480
Author(s):  
Hiresh Ayoubian ◽  
Joana Heinzelmann ◽  
Sebastian Hölters ◽  
Oybek Khalmurzaev ◽  
Alexey Pryalukhin ◽  
...  

Although microRNAs are described as promising biomarkers in many tumor types, little is known about their role in PSCC. Thus, we attempted to identify miRNAs involved in tumor development and metastasis in distinct histological subtypes considering the impact of HPV infection. In a first step, microarray analyses were performed on RNA from formalin-fixed, paraffin-embedded tumor (22), and normal (8) tissue samples. Microarray data were validated for selected miRNAs by qRT-PCR on an enlarged cohort, including 27 tumor and 18 normal tissues. We found 876 significantly differentially expressed miRNAs (p ≤ 0.01) between HPV-positive and HPV-negative tumor samples by microarray analysis. Although no significant differences were detected between normal and tumor tissue in the whole cohort, specific expression patterns occurred in distinct histological subtypes, such as HPV-negative usual PSCC (95 differentially expressed miRNAs, p ≤ 0.05) and HPV-positive basaloid/warty subtypes (247 differentially expressed miRNAs, p ≤ 0.05). Selected miRNAs were confirmed by qRT-PCR. Furthermore, microarray data revealed 118 miRNAs (p ≤ 0.01) that were significantly differentially expressed in metastatic versus non-metastatic usual PSCC. The lower expression levels for miR-137 and miR-328-3p in metastatic usual PSCC were validated by qRT-PCR. The results of this study confirmed that specific miRNAs could serve as potential diagnostic and prognostic markers in single PSCC subtypes and are associated with HPV-dependent pathways.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
J. Robert Macey ◽  
Stephan Pabinger ◽  
Charles G. Barbieri ◽  
Ella S. Buring ◽  
Vanessa L. Gonzalez ◽  
...  

AbstractAnimal mitochondrial genomic polymorphism occurs as low-level mitochondrial heteroplasmy and deeply divergent co-existing molecules. The latter is rare, known only in bivalvian mollusks. Here we show two deeply divergent co-existing mt-genomes in a vertebrate through genomic sequencing of the Tuatara (Sphenodon punctatus), the sole-representative of an ancient reptilian Order. The two molecules, revealed using a combination of short-read and long-read sequencing technologies, differ by 10.4% nucleotide divergence. A single long-read covers an entire mt-molecule for both strands. Phylogenetic analyses suggest a 7–8 million-year divergence between genomes. Contrary to earlier reports, all 37 genes typical of animal mitochondria, with drastic gene rearrangements, are confirmed for both mt-genomes. Also unique to vertebrates, concerted evolution drives three near-identical putative Control Region non-coding blocks. Evidence of positive selection at sites linked to metabolically important transmembrane regions of encoded proteins suggests these two mt-genomes may confer an adaptive advantage for an unusually cold-tolerant reptile.


Sign in / Sign up

Export Citation Format

Share Document