scholarly journals Cross Inhibition of MPK10 and WRKY10 Participating in the Growth of Endosperm in Arabidopsis thaliana

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoyuan Xi ◽  
Zhengdao Hu ◽  
Xuerui Nie ◽  
Mingming Meng ◽  
Hao Xu ◽  
...  

The product of double fertilization produces seed, which contains three components: triploid endosperm, diploid embryo, and maternal seed coat. Amongst them, the endosperm plays a crucial role in coordinating seed growth. Mitogen-activated protein kinase (MAPK) cascades are conserved in eukaryotes and involved in signal transduction of plant development. MPK3, MPK6, and MPK10 form a small group of MPKs family in Arabidopsis thaliana. MPK3 and MPK6 are extensively studied and were found to be involved in diverse processes including plant reproduction. However, less is known about the function of MPK10. Here, we found WRKY10/MINI3, a member of HAIKU (IKU) pathway engaging in endosperm development, and MPK10 is high-specifically expressed in the early developmental endosperm but with opposite gradients. We further proved that MPK10 and WRKY10 cross-inhibit the expression of each other. The inhibition effect of MPK10 on gene expression of WRKY10 and the downstream targets is supported by the fact that MPK10 interacts with WRKY10 and suppresses the transcriptional activity of WRKY10. Constantly, mpk10 mutants produce big seeds while WRKY10/MINI3 positively regulate seed growth. Altogether, our data provides a model of WRKY10 and MPK10 regulating endosperm development with a unique cross inhibitory mechanism.

2004 ◽  
Vol 63 (2) ◽  
pp. 227-232 ◽  
Author(s):  
Yun Chau Long ◽  
Ulrika Widegren ◽  
Juleen R. Zierath

Exercise training improves glucose homeostasis through enhanced insulin sensitivity in skeletal muscle. Muscle contraction through physical exercise is a physiological stimulus that elicits multiple biochemical and biophysical responses and therefore requires an appropriate control network. Mitogen-activated protein kinase (MAPK) signalling pathways constitute a network of phosphorylation cascades that link cellular stress to changes in transcriptional activity. MAPK cascades are divided into four major subfamilies, including extracellular signal-regulated kinases 1 and 2, p38 MAPK, c-Jun NH2-terminal kinase and extracellular signal-regulated kinase 5. The present review will present the current understanding of parallel MAPK signalling in human skeletal muscle in response to exercise and muscle contraction, with an emphasis on identifying potential signalling mechanisms responsible for changes in gene expression.


Reproduction ◽  
2011 ◽  
Vol 141 (5) ◽  
pp. 707-714 ◽  
Author(s):  
Qi En Yang ◽  
Mariana I Giassetti ◽  
Alan D Ealy

Fibroblast growth factors (FGFs) 2 and FGF10 are uterine- and conceptus-derived factors that mediate trophoblast activities in cattle and sheep. To extend our understanding of how FGFs may control peri-implantation development in ruminants, we determined whether FGF2 and FGF10 impact trophoblast cell migration. Transwell inserts containing 8 μm pores were used to examine whether FGF2 or FGF10 supplementation increased oTr1 cell migration. Supplementation with 0.5 ng/ml FGF2 or FGF10 did not affect oTr1 cell migration number, but exposure to 5 or 50 ng/ml FGF2 or FGF10 increased (P<0.05) oTr1 cell migration when compared with controls. The involvement of specific MAP kinase (MAPK) cascades in mediating this FGF response was examined by using pharmacological inhibitors of specific MAPKs. Western blot analysis indicated that FGF2 and FGF10 increased phosphorylation status of MAPKs 1, 3, 8, 9, and 14. Exposure to specific inhibitors blocked FGF induction of each MAPK. Exposure to inhibitors before supplementation with FGF2 or FGF10 prevented FGF induction of cell migration, indicating that each of these signaling molecules was required for FGF effects. A final series of studies examined whether FGF2 and FGF10 also mediated the migration of a bovine trophoblast line (CT1 cell). Increases in migration were detected in each cell line by supplementing 5 or 50 ng/ml FGF2 or FGF10 (P<0.05). In summary, FGF2 and FGF10 regulate migratory activity of ovine trophoblast cells through MAPK-dependent pathways. These outcomes provide further evidence that FGFs function as mediators of peri-implantation conceptus development in cattle and sheep.


2019 ◽  
Author(s):  
ZhiGuo Liu ◽  
Lixin Wang ◽  
Chaoling Xue ◽  
Yuetong Chu ◽  
Weilin Gao ◽  
...  

Abstract Backgrounds Mitogen activated protein kinase (MAPK) cascades play vital roles in signal transduction in response to various biotic and abiotic stresses. In the previous study we have identified 10 ZjMAPKs and 5 ZjMAPKKs in Chinese jujube genome and found some crucial members of ZjMAPKs and ZjMAPKKs might function importantly in the process of phytoplasma infection. But how these ZjMAPKKs were modulated by ZjMAPKKKs during this process is still elusive and little information is known about the MAPKKKs in Chinese jujube. Results In the current study, 56 ZjMAPKKKs were identified in the jujube genome and all of them contain the key S-TKc (serine/threonine protein kinase) domain which distributed in all 12 chromosomes. Phylogenetic analysis showed that these ZjMAPKKKs could be classified into two subfamilies, of which 41 belonged to Raf, and 15 to MEKK subfamily. In addition, the ZjMAPKKKs in each subfamily share the same conserved motifs and gene structures, one pair of ZjMAPKKKs (15/16) was the only tandem duplication event on Chromosome 5. Furthermore, the expression profiles of these MAPKKKs in response to phytoplasma disease were investigated by qPCR. In the three main infected tissues (witches’ broom leaves, phyllody leaves, apparent normal leaves), the ZjMAPKKK26 and 45 were significantly up regulated and the ZjMAPKKK3, 43 and 50 were down regulated. While the ZjMAPKKK4, 10, 25 and 44 were significant highly induced in the sterile cultivated tissues infected by phytoplasma, and the ZjMAPKKK7, 30, 35, 37, 40, 41, 43 and 46 were significantly down regulated. Conclusions The identification and classification analysis of ZjMAPKKKs was firstly reported and some key individual ZjMAPKKKs genes might play essential roles in response to phytoplasma infection. This could provide initial understanding for the mechanism that how the ZjMAPKKKs were involved in jujube - phytoplasma infection.


2007 ◽  
Vol 405 (3) ◽  
pp. 559-568 ◽  
Author(s):  
Joseph Friedman ◽  
Sarah Kraus ◽  
Yirmi Hauptman ◽  
Yoni Schiff ◽  
Rony Seger

The exposure to non-thermal microwave electromagnetic fields generated by mobile phones affects the expression of many proteins. This effect on transcription and protein stability can be mediated by the MAPK (mitogen-activated protein kinase) cascades, which serve as central signalling pathways and govern essentially all stimulated cellular processes. Indeed, long-term exposure of cells to mobile phone irradiation results in the activation of p38 as well as the ERK (extracellular-signal-regulated kinase) MAPKs. In the present study, we have studied the immediate effect of irradiation on the MAPK cascades, and found that ERKs, but not stress-related MAPKs, are rapidly activated in response to various frequencies and intensities. Using signalling inhibitors, we delineated the mechanism that is involved in this activation. We found that the first step is mediated in the plasma membrane by NADH oxidase, which rapidly generates ROS (reactive oxygen species). These ROS then directly stimulate MMPs (matrix metalloproteinases) and allow them to cleave and release Hb-EGF [heparin-binding EGF (epidermal growth factor)]. This secreted factor activates the EGF receptor, which in turn further activates the ERK cascade. Thus this study demonstrates for the first time a detailed molecular mechanism by which electromagnetic irradiation from mobile phones induces the activation of the ERK cascade and thereby induces transcription and other cellular processes.


Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1160
Author(s):  
Xinying Chen ◽  
Pengkai Wang ◽  
Fangfang Zhao ◽  
Lu Lu ◽  
Xiaofei Long ◽  
...  

To adapt and sense environmental perturbations, including a variety of biotic and abiotic stress conditions, plants have developed disparate regulatory pathways. Mitogen-activated protein kinase (MAPK or MPK) signaling cascades are found widespread across the eukaryotic kingdoms of life. In plants, they may regulate signaling pathways aimed at resisting the stressful effects of low temperature, salt damage, drought, touch, and mechanical damage. To date, no conclusive studies into Liriodendron chinense (Hemsl.) Sarg MPK-related stress resistance signaling have been performed. In our study, we cloned three homologous L. chinense MAP kinase kinase family genes: LcMKK2, LcMKK4, and LcMKK6. LcMKK2 and LcMKK6 have their highest expression level in the root, while LcMKK4 is highly expressed in the stem. LcMKK2 showed upregulation in response to salt and cold stress conditions in L. chinense. To further analyze its gene function, we overexpressed LcMKK2 in wild-type Arabidopsis thaliana (L.) Heynh. and obtained transgenic plants. Overexpression of LcMKK2 caused a significant reduction in plant mortality (from 96% to 70%) in response to a 7-day 200 mM NaCl treatment. Therefore, we conclude that LcMKK2 is involved in a signaling response to salt stress, and it could thus prove an effective target gene for breeding strategies to improve Liriodendron salt tolerance.


Planta ◽  
2019 ◽  
Vol 250 (4) ◽  
pp. 1177-1189 ◽  
Author(s):  
Jesús Salvador López-Bucio ◽  
Guadalupe Jessica Salmerón-Barrera ◽  
Gustavo Ravelo-Ortega ◽  
Javier Raya-González ◽  
Patricia León ◽  
...  

2013 ◽  
Vol 68 (3-4) ◽  
pp. 148-154 ◽  
Author(s):  
Hui Yang ◽  
Shu Yuan ◽  
Yi Luo ◽  
Ji Huang ◽  
Yang-Er Chen ◽  
...  

Plant hormones play pivotal roles as signals of plant-pathogen interactions. Here, we report that exogenous application of salicylic acid (SA), jasmonic acid (JA), ethephon (ETH), and abscisic acid (ABA) can reduce Turnip crinkle virus (TCV) accumulation in systemic leaves of Arabidopsis thaliana during early infection. SA and ABA are more efficient and confer a longer-lasting resistance against TCV than JA and ETH, and the plant hormones interact in effecting the plant defence. Synergistic actions of SA and JA, and SA and ET, and an antagonistic action of SA and ABA have been observed in the Arabidopsis-TCV interaction. ABA can down-regulate the expression of the pathogenesis-related genes PR1 and PDF1.2, and compared to the wild type, it drastically reduces TCV accumulation in NahG transgenic plants and the eds5-p1 mutant, both of which do not accumulate SA. This indicates that SA signaling negatively regulates the ABA-mediated defence. ABA-induced resistance against TCV is independent of SA. We also found that mitogen-activated protein kinase 5 (MPK5) may be involved in ABA-mediated defence. These results indicate that Arabidopsis can activate distinct signals to inhibit virus accumulation. Cooperative or antagonistic crosstalk between them is pivotal for establishing disease resistance. These results show potential to enhance the plant defence against viruses by manipulating diverse hormones.


2020 ◽  
Vol 70 (1) ◽  
pp. 81-95
Author(s):  
Qing Li ◽  
Haitao Zhao ◽  
Lin He ◽  
Hongdan Yang ◽  
Qun Wang

Abstract The role of leptin has been documented in several studies, including activated threonine phosphorylation of extracellular signal-regulated kinase (ERK1/2) in the reproduction of rodents and humans. Our previous studies have demonstrated that mitogen-activated protein kinase (MAPK) cascades ERK, P38, and c-Jun N-terminal kinase (JNK) are involved in the spermatogenesis and acrosome reaction of Eriocheir sinensis. Therefore, the aim of this study was to investigate the expression of leptin and its receptor (LepR), and the effect of leptin on MAPK cascades during calcium ionophore A23187-induced spermatozoa acrosome reaction in crabs. Successful western blotting revealed a 16 kDa band for leptin, and 120 kDa and 90 kDa bands for the obese receptor (LepR), respectively, in the tested male reproductive tissues. Both leptin and LepR were localized at the pro-acrosomal vesicle and apical cap (AC) of spermatids, suggesting their role in the subsequent acrosome reaction. Moreover, acrosome reaction can be enhanced by leptin, and this effect decreased due to the anti-LepR antibody. Afterwards, we investigated the effects of leptin on MAPK cascades. The results showed that leptin mainly activated the phosphorylation of ERK, P38 and JNK proteins in the apical cap during the acrosome reaction in crab spermatozoa. This study addresses the role of leptin on spermatozoa, and suggests that leptin may induce molecular changes associated with spermatozoa during acrosome reaction.


Sign in / Sign up

Export Citation Format

Share Document