scholarly journals PIP2, An Auxin Induced Plant Peptide Hormone Regulates Root and Hypocotyl Elongation in Arabidopsis

2021 ◽  
Vol 12 ◽  
Author(s):  
Saddam Hussain ◽  
Wei Wang ◽  
Sajjad Ahmed ◽  
Xutong Wang ◽  
Adnan ◽  
...  

Auxin is one of the traditional plant hormones, whereas peptide hormones are peptides with hormone activities. Both auxin and plant peptide hormones regulate multiple aspects of plant growth and development, and there are cross-talks between auxin and plant peptide hormones. PAMP-INDUCED SECRETED PEPTIDES (PIPs) and PIP-LIKEs (PIPLs) are a new family of plant peptide hormone, and PIPL3/TARGET OF LBD SIXTEEN 2 (TOLS2) has been shown to regulate lateral root formation in Arabidopsis. We report here the identification of PIP2 as an auxin response gene, and we found it plays a role in regulating root and hypocotyl development in Arabidopsis. By using quantitative RT-PCR, we found that the expression of PIP2 but not PIP1 and PIP3 was induced by auxin, and auxin induced expression of PIP2 was reduced in nph4-1 and arf19-4, the lost-of-function mutants of Auxin Response Factor 7 (ARF7) and ARF19, respectively. By generating and characterizing overexpressing transgenic lines and gene edited mutants for PIP2, we found that root length in the PIP2 overexpression plant seedlings was slightly shorter when compared with that in the Col wild type plants, but root length of the pip2 mutant seedlings remained largely unchanged. For comparison, we also generated overexpressing transgenic lines and gene edited mutants for PIP3, as well as pip2 pip3 double mutants. Surprisingly, we found that root length in the PIP3 overexpression plant seedlings is shorter than that of the PIP2 overexpression plant seedlings, and the pip3 mutant seedlings also produced short roots. However, root length in the pip2 pip3 double mutant seedlings is largely similar to that in the pip3 single mutant seedlings. On the other hand, hypocotyl elongation assays indicate that only the 35S:PIP2 transgenic plant seedlings produced longer hypocotyls when compared with the Col wild type seedlings. Further analysis indicates that PIP2 promotes cell division as well as cell elongation in hypocotyls. Taken together, our results suggest that PIP2 is an auxin response gene, and PIP2 plays a role in regulating root and hypocotyl elongation in Arabidopsis likely via regulating cell division and cell elongation.

2019 ◽  
Vol 20 (20) ◽  
pp. 4971 ◽  
Author(s):  
Chunfen Fan ◽  
Guangya Wang ◽  
Youmei Wang ◽  
Ran Zhang ◽  
Yanting Wang ◽  
...  

Grain size and weight are two important determinants of grain yield in rice. Although overexpression of sucrose synthase (SUS) genes has led to several improvements on cellulose and starch-based traits in transgenic crops, little is reported about SUS enhancement of hull size and grain weight in rice. In this study, we selected transgenic rice plants that overexpressed OsSUS1-6 genes driven with the maize Ubi promoter. Compared to the controls (wild type and empty vector line), all independent OsSUS homozygous transgenic lines exhibited considerably increased grain yield and grain weights. Using the representative OsSUS3 overexpressed transgenic plants, four independent homozygous lines showed much raised cell numbers for larger hull sizes, consistent with their enhanced primary cell wall cellulose biosynthesis and postponed secondary wall synthesis. Accordingly, the OsSUS3 transgenic lines contained much larger endosperm volume and higher starch levels than those of the controls in the mature grains, leading to increased brown grain weights by 15–19%. Hence, the results have demonstrated that OsSUS overexpression could significantly improve hull size and grain weight by dynamically regulating cell division and starch accumulation in the transgenic rice.


2019 ◽  
Vol 99 (4) ◽  
pp. 546-555 ◽  
Author(s):  
Yinglu Sun ◽  
Xin Liu ◽  
Lianshuang Fu ◽  
Peng Qin ◽  
Tong Li ◽  
...  

Soil salinization is an important threat to wheat growth and production. Previous transcriptome analysis showed that the expression of the betaine aldehyde dehydrogenase (BADH) gene differed significantly between cultivars with strong or weak salinity tolerance. Herein, the BADH gene from the wheat cultivar Dongnongdongmai 1 was cloned and transformed into wild-type Arabidopsis to identify its function in salt tolerance. Root length was calculated at 0, 50, 100, 150, and 200 mmol L−1 NaCl for 7 d. The relative electrolytic leakage (REL), GB content, and BADH activity were measured at 150 mmol L−1 NaCl for 1 and 3 d. It was determined that BADH activity and the GB content of TaBADH-overexpressed transgenic (TaBADHOE) lines were significantly higher than in wild-type lines. Salt stress analysis showed that the root length of TaBADHOE lines 4, 18, and 19 were 0.44, 0.54, and 0.35 cm, respectively, which were significantly longer than the 0.24 cm roots of the wild-type line in the media containing 150 mmol L−1 NaCl for 7 d. In addition, the RELs of transgenic lines 4, 18, and 19 were 0.37, 0.33, and 0.42, respectively, which is significantly lower than the 0.63 of the wild-type line in media containing 150 mmol L−1 NaCl for 3 d. These results demonstrate that TaBADH significantly increased plant salt tolerance, indicating that genetic transformation of TaBADH may be an effective and sustainable breeding method for increasing salt tolerance in wheat cultivars.


2015 ◽  
Vol 58 ◽  
pp. 115-131 ◽  
Author(s):  
Ayane Motomitsu ◽  
Shinichiro Sawa ◽  
Takashi Ishida

The ligand–receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone–receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Madhavi Latha Gandla ◽  
Niklas Mähler ◽  
Sacha Escamez ◽  
Tomas Skotare ◽  
Ogonna Obudulu ◽  
...  

Abstract Background Bioconversion of wood into bioproducts and biofuels is hindered by the recalcitrance of woody raw material to bioprocesses such as enzymatic saccharification. Targeted modification of the chemical composition of the feedstock can improve saccharification but this gain is often abrogated by concomitant reduction in tree growth. Results In this study, we report on transgenic hybrid aspen (Populus tremula × tremuloides) lines that showed potential to increase biomass production both in the greenhouse and after 5 years of growth in the field. The transgenic lines carried an overexpression construct for Populus tremula × tremuloides vesicle-associated membrane protein (VAMP)-associated protein PttVAP27-17 that was selected from a gene-mining program for novel regulators of wood formation. Analytical-scale enzymatic saccharification without any pretreatment revealed for all greenhouse-grown transgenic lines, compared to the wild type, a 20–44% increase in the glucose yield per dry weight after enzymatic saccharification, even though it was statistically significant only for one line. The glucose yield after enzymatic saccharification with a prior hydrothermal pretreatment step with sulfuric acid was not increased in the greenhouse-grown transgenic trees on a dry-weight basis, but increased by 26–50% when calculated on a whole biomass basis in comparison to the wild-type control. Tendencies to increased glucose yields by up to 24% were present on a whole tree biomass basis after acidic pretreatment and enzymatic saccharification also in the transgenic trees grown for 5 years on the field when compared to the wild-type control. Conclusions The results demonstrate the usefulness of gene-mining programs to identify novel genes with the potential to improve biofuel production in tree biotechnology programs. Furthermore, multi-omic analyses, including transcriptomic, proteomic and metabolomic analyses, performed here provide a toolbox for future studies on the function of VAP27 proteins in plants.


1998 ◽  
Vol 64 (7) ◽  
pp. 2341-2345 ◽  
Author(s):  
Ann G. Matthysse ◽  
Susan McMahan

ABSTRACT Root colonization by Agrobacterium tumefaciens was measured by using tomato and Arabidopsis thaliana roots dipped in a bacterial suspension and planted in soil. Wild-type bacteria showed extensive growth on tomato roots; the number of bacteria increased from 103 bacteria/cm of root length at the time of inoculation to more than 107 bacteria/cm after 10 days. The numbers of cellulose-minus and nonattachingattB, attD, and attR mutant bacteria were less than 1/10,000th the number of wild-type bacteria recovered from tomato roots. On roots of A. thalianaecotype Landsberg erecta, the numbers of wild-type bacteria increased from about 30 to 8,000 bacteria/cm of root length after 8 days. The numbers of cellulose-minus and nonattaching mutant bacteria were 1/100th to 1/10th the number of wild-type bacteria recovered after 8 days. The attachment of A. tumefaciens to cut A. thaliana roots incubated in 0.4% sucrose and observed with a light microscope was also reduced with cel andatt mutants. These results suggest that cellulose synthesis and attachment genes play a role in the ability of the bacteria to colonize roots, as well as in bacterial pathogenesis.


1997 ◽  
Vol 139 (6) ◽  
pp. 1361-1371 ◽  
Author(s):  
Isabel Molina ◽  
Sigrid Baars ◽  
Julie A. Brill ◽  
Karen G. Hales ◽  
Margaret T. Fuller ◽  
...  

The tiovivo (tio) gene of Drosophila encodes a kinesin-related protein, KLP38B, that colocalizes with condensed chromatin during cell division. Wild-type function of the tio gene product KLP38B is required for normal chromosome segregation during mitosis. Mitotic cells in tio larval brains displayed circular mitotic figures, increased ploidy, and abnormal anaphase figures. KLP38B mRNA is maternally provided and expressed in cells about to undergo division. We propose that KLP38B, perhaps redundantly with other chromosome-associated microtubule motor proteins, contributes to interactions between chromosome arms and microtubules important for establishing bipolar attachment of chromosomes and assembly of stable bipolar spindles.


Development ◽  
1991 ◽  
Vol 113 (4) ◽  
pp. 1357-1364 ◽  
Author(s):  
M. Carmena ◽  
C. Gonzalez ◽  
J. Casal ◽  
P. Ripoll

Most mitotic mutants in Drosophila do not lead to lethality in early development despite the highly abnormal chromosome behaviour that they elicit. This has been explained as being the effect of maternally provided wild-type products. We have tested this hypothesis by studying cuticular clones derived from cells in which there has been loss of a marked Y chromosome due to chromosome nondisjunction in individuals homozygous for the mutation abnormal spindle who are progeny of heterozygous mothers. We have found that the size and frequency of these clones are higher than in control flies. Furthermore, by analysing flies whose female parents have different doses of the asp+ gene, we have found that there is a correlation between the amount of maternally contributed asp+ product and the frequency and size of cuticular clones. We have also estimated the time in development when the first mitotic mistakes take place, i.e. the time when maternal products are no longer sufficient to carry out normal cell division.


2017 ◽  
Vol 866 ◽  
pp. 29-32
Author(s):  
Darin Dangrit ◽  
Kanokporn Sompornpailin

Flavonol synthase (FLS) gene encodes an enzyme that is involved in conversion substrates into flavonols, quercetin and kaempferol. These substances are a subgroup of flavonoids which have an important role in both plant and human health. Many environmental factors such as temperature, pH and UV-A radiation have been studied and presented relationship with flavonoid synthesis. In this experiment, the combination of visible and UV-A lights was used as factors for elevating flavonoid biosynthesis of wild type (WT) plant and two lines of FLS transgenic plant under tissue culture condition. Both transgenic lines significantly enhanced the accumulation of quercetin and kaempferol substances nearly one fold higher than WT plant did. The photosynthetic pigment levels of chlorophyll A, chlorophyll B and carotenoid in transgenic lines are in the range 45.20-46.88, 16.34-17.04 and 13.63-13.46, while those of WT plants are 35.93, 13.18 and 10.55 (µg/g FW), respectively. Therefore, FLS transgenic plants containing high flavonol content showed a better in the protection photosynthetic pigments by less reductions of chlorophyll and carotenoid pigments.


Sign in / Sign up

Export Citation Format

Share Document