scholarly journals Distinct Roles of N-Terminal Fatty Acid Acylation of the Salinity-Sensor Protein SOS3

2021 ◽  
Vol 12 ◽  
Author(s):  
Irene Villalta ◽  
Elena García ◽  
Dámaso Hornero-Mendez ◽  
Raúl Carranco ◽  
Carlos Tello ◽  
...  

The Salt-Overly-Sensitive (SOS) pathway controls the net uptake of sodium by roots and the xylematic transfer to shoots in vascular plants. SOS3/CBL4 is a core component of the SOS pathway that senses calcium signaling of salinity stress to activate and recruit the protein kinase SOS2/CIPK24 to the plasma membrane to trigger sodium efflux by the Na/H exchanger SOS1/NHX7. However, despite the well-established function of SOS3 at the plasma membrane, SOS3 displays a nucleo-cytoplasmic distribution whose physiological meaning is not understood. Here, we show that the N-terminal part of SOS3 encodes structural information for dual acylation with myristic and palmitic fatty acids, each of which commands a different location and function of SOS3. N-myristoylation at glycine-2 is essential for plasma membrane association and recruiting SOS2 to activate SOS1, whereas S-acylation at cysteine-3 redirects SOS3 toward the nucleus. Moreover, a poly-lysine track in positions 7–11 that is unique to SOS3 among other Arabidopsis CBLs appears to be essential for the correct positioning of the SOS2-SOS3 complex at the plasma membrane for the activation of SOS1. The nuclear-localized SOS3 protein had limited bearing on the salt tolerance of Arabidopsis. These results are evidence of a novel S-acylation dependent nuclear trafficking mechanism that contrasts with alternative subcellular targeting of other CBLs by S-acylation.

2007 ◽  
Vol 403 (1) ◽  
pp. 97-108 ◽  
Author(s):  
Yoko Nakano ◽  
Botond Banfi ◽  
Algirdas J. Jesaitis ◽  
Mary C. Dinauer ◽  
Lee-Ann H. Allen ◽  
...  

Otoconia are small biominerals in the inner ear that are indispensable for the normal perception of gravity and motion. Normal otoconia biogenesis requires Nox3, a Nox (NADPH oxidase) highly expressed in the vestibular system. In HEK-293 cells (human embryonic kidney cells) transfected with the Nox regulatory subunits NoxO1 (Nox organizer 1) and NoxA1 (Nox activator 1), functional murine Nox3 was expressed in the plasma membrane and exhibited a haem spectrum identical with that of Nox2, the electron transferase of the phagocyte Nox. In vitro Nox3 cDNA expressed an ∼50 kDa primary translation product that underwent N-linked glycosylation in the presence of canine microsomes. RNAi (RNA interference)-mediated reduction of endogenous p22phox, a subunit essential for stabilization of Nox2 in phagocytes, decreased Nox3 activity in reconstituted HEK-293 cells. p22phox co-precipitated not only with Nox3 and NoxO1 from transfectants expressing all three proteins, but also with NoxO1 in the absence of Nox3, indicating that p22phox physically associated with both Nox3 and with NoxO1. The plasma membrane localization of Nox3 but not of NoxO1 required p22phox. Moreover, the glycosylation and maturation of Nox3 required p22phox expression, suggesting that p22phox was required for the proper biosynthesis and function of Nox3. Taken together, these studies demonstrate critical roles for p22phox at several distinct points in the maturation and assembly of a functionally competent Nox3 in the plasma membrane.


2004 ◽  
Vol 286 (5) ◽  
pp. C1177-C1187 ◽  
Author(s):  
Sucheta M. Vaingankar ◽  
Thomas A. Fitzpatrick ◽  
Kristen Johnson ◽  
James W. Goding ◽  
Michele Maurice ◽  
...  

The ectonucleoside pyrophosphatase phosphodiesterase 1 (NPP1/PC-1) is a member of the NPP enzyme family that is critical in regulating mineralization. In certain mineralizing sites of bone and cartilage, membrane-limited vesicles [matrix vesicles (MVs)] provide a sheltered internal environment for nucleation of calcium-containing crystals, including hydroxyapatite. MV formation occurs by budding of vesicles from the plasma membrane of mineralizing cells. The MVs are enriched in proteins that promote mineralization. Paradoxically, NPP1, the type II transmembrane protein that generates the potent hydroxyapatite crystal growth inhibitor inorganic pyrophosphate (PPi), is also enriched in MVs. Although osteoblasts express NPP1, NPP2, and NPP3, only NPP1 is enriched in MVs. Therefore, this study uses mineralizing human osteoblastic SaOS-2 cells, a panel of NPP1 mutants, and NPP1 chimeras with NPP3, which does not concentrate in MVs, to investigate how NPP1 preferentially targets to MVs. We demonstrated that a cytosolic dileucine motif (amino acids 49–50) was critical in localizing NPP1 to regions of the plasma membrane that budded off into MVs. Moreover, transposition of the NPP1 cytoplasmic dileucine motif and flanking region (AAASLLAP) to NPP3 conferred to NPP3 the ability to target to the plasma membrane and, subsequently, concentrate in MVs. Functionally, the cytosolic tail dileucine motif NPP1 mutants lost the ability to support MV PPi concentrations and to suppress calcification. The results identify a specific targeting motif in the NPP1 cytosolic tail that delivers PPi-generating NPP activity to osteoblast MVs for control of calcification.


1984 ◽  
Vol 99 (1) ◽  
pp. 95s-103s ◽  
Author(s):  
P Mangeat ◽  
K Burridge

In this review we discuss some of the proteins for which a role in linking actin to the fibroblast plasma membrane has been suggested. We focus on the family of proteins related to erythrocyte spectrin, proteins that have generally been viewed as having an organization and a function in actin-membrane attachment similar to those of erythrocyte spectrin. Experiments in which we precipitated the nonerythrocyte spectrin within living fibroblasts have led us to question this supposed similarity of organization and function of the nonerythrocyte and erythrocyte spectrins. Intracellular precipitation of fibroblast spectrin does not affect the integrity of the major actin-containing structures, the stress fiber microfilament bundles. Unexpectedly, however, we found that the precipitation of spectrin results in a condensation and altered distribution of the vimentin class of intermediate filaments in most cells examined. Although fibroblast spectrin may have a role in the attachment of some of the cortical, submembranous actin, it is surprising how little the intracellular immunoprecipitation of the spectrin affects the cells. Several proteins have been found concentrated at the ends of stress fibers, where the actin filaments terminate at focal contacts. Two of these proteins, alpha-actinin and fimbrin, have properties that suggest that they are not involved in the attachment of the ends of the bundles to the membrane but are more probably involved in the organization and cross-linking of the filaments within the bundles. On the other hand, vinculin and talin are two proteins that interact with each other and may form part of a chain of attachments between the ends of the microfilament bundles and the focal contact membrane. Their role in this attachment, however, has not been established and further work is needed to examine their interaction with actin and to identify any other components with which they may interact, particularly in the plasma membrane.


2021 ◽  
Vol 7 (7) ◽  
pp. 514
Author(s):  
Mariangela Dionysopoulou ◽  
George Diallinas

Recent biochemical and biophysical evidence have established that membrane lipids, namely phospholipids, sphingolipids and sterols, are critical for the function of eukaryotic plasma membrane transporters. Here, we study the effect of selected membrane lipid biosynthesis mutations and of the ergosterol-related antifungal itraconazole on the subcellular localization, stability and transport kinetics of two well-studied purine transporters, UapA and AzgA, in Aspergillus nidulans. We show that genetic reduction in biosynthesis of ergosterol, sphingolipids or phosphoinositides arrest A. nidulans growth after germling formation, but solely blocks in early steps of ergosterol (Erg11) or sphingolipid (BasA) synthesis have a negative effect on plasma membrane (PM) localization and stability of transporters before growth arrest. Surprisingly, the fraction of UapA or AzgA that reaches the PM in lipid biosynthesis mutants is shown to conserve normal apparent transport kinetics. We further show that turnover of UapA, which is the transporter mostly sensitive to membrane lipid content modification, occurs during its trafficking and by enhanced endocytosis, and is partly dependent on autophagy and Hect-type HulARsp5 ubiquitination. Our results point out that the role of specific membrane lipids on transporter biogenesis and function in vivo is complex, combinatorial and transporter-dependent.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Catarina Dias ◽  
Jesper Nylandsted

AbstractMaintenance of plasma membrane integrity is essential for normal cell viability and function. Thus, robust membrane repair mechanisms have evolved to counteract the eminent threat of a torn plasma membrane. Different repair mechanisms and the bio-physical parameters required for efficient repair are now emerging from different research groups. However, less is known about when these mechanisms come into play. This review focuses on the existence of membrane disruptions and repair mechanisms in both physiological and pathological conditions, and across multiple cell types, albeit to different degrees. Fundamentally, irrespective of the source of membrane disruption, aberrant calcium influx is the common stimulus that activates the membrane repair response. Inadequate repair responses can tip the balance between physiology and pathology, highlighting the significance of plasma membrane integrity. For example, an over-activated repair response can promote cancer invasion, while the inability to efficiently repair membrane can drive neurodegeneration and muscular dystrophies. The interdisciplinary view explored here emphasises the widespread potential of targeting plasma membrane repair mechanisms for therapeutic purposes.


2005 ◽  
Vol 11 (5) ◽  
pp. 535-546 ◽  
Author(s):  
Anna Kondakov ◽  
Buko Lindner

Bacterial glycolipids are complex amphiphilic molecules which are, on the one hand, of utmost importance for the organization and function of bacterial membranes and which, on the other hand, play a major role in the activation of cells of the innate and adaptive immune system of the host. Already small alterations to their chemical structure may influence the biological activity tremendously. Due to their intrinsic biological heterogeneity [number and type of fatty acids, saccharide structures and substitution with for example, phosphate ( P), 2-aminoethyl-(pyro)phosphate groups ( P-Etn) or 4-amino-4-deoxyarabinose (Ara4N)], separation of the different components are a prerequisite for unequivocal chemical and nuclear magnetic resonance structural analyses. In this contribution, the structural information which can be obtained from heterogenous samples of glycolipids by Fourier transform (FT) ion cyclotron resonance mass spectrometric methods is described. By means of recently analysed complex biological samples, the possibilities of high-resolution electrospray ionization FT-MS are demonstrated. Capillary skimmer dissociation, as well as tandem mass spectrometry (MS/MS) analysis utilizing collision-induced dissociation and infrared multiphoton dissociation, are compared and their advantages in providing structural information of diagnostic importance are discussed.


Endocrinology ◽  
2012 ◽  
Vol 153 (12) ◽  
pp. 6126-6135 ◽  
Author(s):  
L. S. Loubière ◽  
E. Vasilopoulou ◽  
J. D. Glazier ◽  
P. M. Taylor ◽  
J. A. Franklyn ◽  
...  

2011 ◽  
Vol 6 (7) ◽  
pp. 1026-1029 ◽  
Author(s):  
Nadav Sorek ◽  
Yoav Henis ◽  
Shaul Yalovsky

Author(s):  
Sherin Saheera ◽  
Vivek P Jani ◽  
Kenneth W Witwer ◽  
Shelby Kutty

Extracellular vesicles (EVs) are nanosized lipid bilayer-delimited particles released from cells that mediate intercellular communications and play a pivotal role in various physiological and pathological processes. Subtypes of EVs may include plasma-membrane ectosomes or microvesicles and endosomal-origin exosomes, although functional distinctions remain unclear. EVs carry cargo proteins, nucleic acids (RNA and DNA), lipids, and metabolites. By presenting or transferring this cargo to recipient cells, EVs can trigger cellular responses. Here, we summarize what is known about EV biogenesis, composition, and function, with an emphasis on the role of EVs in cardiovascular system. Additionally, we provide an update on the function of EVs in cardiovascular pathophysiology, further highlighting their potential for diagnostic and therapeutic applications.


Sign in / Sign up

Export Citation Format

Share Document