scholarly journals Effects of Starch Synthesis-Related Genes Polymorphism on Quality of Glutinous Rice

2021 ◽  
Vol 12 ◽  
Author(s):  
Ouling Zhang ◽  
Cheng Liang ◽  
Bowen Yang ◽  
Hui You ◽  
Liang Xu ◽  
...  

Glutinous rice (Oryza sativa L.) quality includes thermal properties, retrogradation and pasting viscosity properties, and so on, which have little or no amylose. However, the genetic network regulation of different quality indices has not been systematically studied. The aim was to investigate the relationship between starch synthesis-related genes (SSRGs) and the physicochemical properties of glutinous rice by targeted-gene association analysis (TGAS). The genotypes of 17 SSRGs were analyzed using 46 gene-specific molecular markers in 63 glutinous rice accessions. TGAS and gene interactions analysis indicated that soluble starch synthase (SS) IIa, SSI, starch branching enzyme (BE) IIa, and pullulanase (PUL) had significant genetic effects on glutinous rice quality. SSI and SSIIa were the major genes that regulated thermal properties and retrogradation properties (RP). PUL was central in the regulation of gel consistency (GC), and it participated in the regulation of pasting viscosity parameters (PVP) except for the pasting time and the pasting temperature. BEIIb, ISA1, SSIVb, BEIIa, SSIVa, and their interactions with SSIIa regulated gelatinization temperature (GT) and PVP. The starch properties of glutinous rice are mainly controlled by SSIIa, SSI, PUL, and their interactions, but SSIIa is central among them. These findings indicate that starch properties in glutinous rice have a complex genetic system. It provides crucial information for promoting glutinous rice quality.

2008 ◽  
Vol 7 (5) ◽  
pp. 872-880 ◽  
Author(s):  
Philippe Deschamps ◽  
Delphine Guillebeault ◽  
Jimi Devassine ◽  
David Dauvillée ◽  
Sophie Haebel ◽  
...  

ABSTRACT The nature of the cytoplasmic pathway of starch biosynthesis was investigated in the model heterotrophic dinoflagellate Crypthecodinium cohnii. The storage polysaccharide granules were shown to be composed of both amylose and amylopectin fractions with a chain length distribution and crystalline organization very similar to those of green algae and land plant starch. Preliminary characterization of the starch pathway demonstrated that C. cohnii contains multiple forms of soluble starch synthases and one major 110-kDa granule-bound starch synthase. All purified enzymes displayed a marked substrate preference for UDP-glucose. At variance with most other microorganisms, the accumulation of starch in the dinoflagellate occurs during early and mid-log phase, with little or no synthesis witnessed when approaching stationary phase. In order to establish a genetic system allowing the study of cytoplasmic starch metabolism in eukaryotes, we describe the isolation of marker mutations and the successful selection of random recombinant populations after homothallic crosses.


2020 ◽  
Author(s):  
Liang Xu ◽  
Hui You ◽  
Ouling Zhang ◽  
Xunchao Xiang

Abstract Background: Rice amylose content and amylopectin structure corporately determine rice eating and cooking qualities (ECQs). Soluble starch synthase ( SS ) IV-2 is a member of the soluble starch synthesis gene family but with unknown effects on ECQs. Results: In this study, three populations derived from a cross of two parents who possess the same major genes of starch bio-synthesis were employed to investigate the influence of SSIV-2 and its combined effects with ADPglucose pyrophorylase large unit ( AGPlar ) and Pullulanase ( PUL ) on ECQs. The results illustrated that the polymorphism of SSIV-2 alleles significantly affected gel consistency (GC), gelatinization temperature (GT), percent of retrogradation (PR) and three crucial rapid viscosity analysis (RVA) profile parameters: peak viscosity (PKV), breakdown viscosity (BDV) and setback viscosity (SBV). And SSIV-2 allele derived from CG173R had better quality traits with lower GT, SBV and PR. Moreover, its interaction with AGPlar was responsible for the variations of GC, apparent amylose content (AAC), GT, PR and all RVA parameters except for pasting temperature (PaT) and peak time (PeT), in terms of GC, PKV and CSV, AGPlar derived from CG173R had an epistatic effect on SSIV-2 ; additionally, interaction of SSIV-2 and PUL mainly affected GC, AAC, PKV, CPV, CSV and SBV. I-C and C-1 (I, allele of AGPlar from Guangzhan 63S; C, allele of SSIV-2 from CG173R; 1, allele of PUL from Guangzhan 63S) combinations had better ECQs. Conclusions: SSIV-2 alleles significantly affect rice quality, especially the parameters relevant to gelatinized and thermal characteristics of starch (GC, PR, GT, PKV, BDV and SBV) under the same major genes ( Waxy and SSII-3 ) background. It indicates that SSIV-2 functions elongation of starch chain. These findings suggest that the effects of SSIV-2 and its interaction with AGPlar and PUL are vital for rice quality breeding with the same major genes.


2021 ◽  
Vol 112 ◽  
pp. 106360
Author(s):  
Liquan Jing ◽  
Chen Chen ◽  
Shaowu Hu ◽  
Shupeng Dong ◽  
Yue Pan ◽  
...  

1994 ◽  
Vol 21 (6) ◽  
pp. 829 ◽  
Author(s):  
GW Singletary ◽  
R Banisadr ◽  
PL Keeling

Heat stress during maize seed development can interfere with endosperm starch biosynthesis and reduce seed size, an important component of yield. Our objectives were to evaluate the direct influence of temperature during grain filling on kernel growth, carbohydrate accumulation, and corresponding endosperm metabolism. Kernels of maize were grown in vitro at 25�C until 15 or 16 days after pollination and then subjected to various temperatures for the remainder of their development. Mature kernel dry weight declined 45% in a linear fashion between 22 and 36�C. The rate of starch accumulation reached a maximum at approximately 32�C, and when measured at frequent intervals, declined only slightly with further temperature increase to 35�C. Reduced seed size resulted from an abbreviated duration of starch-related metabolism, which did not appear to be limited by endogenous sugars. Instead, a survey of 12 enzymes of sugar and starch metabolism indicated that ADP glucose pyrophosphorylase and soluble starch synthase were unique in displaying developmental peaks of activity which were compressed both in amount and time, similar to the effect of temperature on starch accumulation. We conclude that decreased starch synthesis in heat-stressed maize kernels results from a premature decline in the activity of these enzymes.


2004 ◽  
Vol 56 (12) ◽  
pp. 563-569 ◽  
Author(s):  
Kenji Katayama ◽  
Seiji Tamiya ◽  
Koji Ishiguro

1994 ◽  
Vol 21 (6) ◽  
pp. 791 ◽  
Author(s):  
CF Jenner

As temperature rises above 18-22�C, the observed decrease in the duration of deposition of dry matter in the kernel is not accompanied by a compensating increase in the rate of grain filling with the result that grain weight (and yield) is diminished at high temperature. Reduced starch content accounts for most of the reduction in grain dry matter at high temperature. Responses to temperature in the low temperature range, 20-30�C (the LTR), could possibly be ascribed to the temperature response characteristics of the reaction catalysed by soluble starch synthase (SSS), the enzyme synthesising starch. However, the rate of cell enlargement and the rate of accumulation of nitrogen in the grain also do not increase much as temperature rises, so other explanations are conceivable for the temperature responses in the LTR. Variation amongst cultivars of wheat in tolerance of high temperature is evident in the LTR. At temperatures above 30�C (in the high temperature range (HTR) between 30 and 40�C), even for short periods, the rate of starch deposition is slower than that observed at lower temperatures, an effect which is carried over after transfer from high to lower temperatures. This response is attributable to a reduction in the activity, possibly due to thermal denaturation, of SSS. Several forms of SSS are found in cereal endosperm, and some forms may be more tolerant of high temperature than others. Loss of enzyme activity at high temperature is swift, but is partly restored some time after transfer from hot to cool conditions. There appear to be two distinct mechanisms of response to elevated temperature, both resulting in a reduced grain weight through reduced starch deposition, but one of them is important only in the range of temperature above 30�C.


1996 ◽  
Vol 320 (2) ◽  
pp. 487-492 ◽  
Author(s):  
Lee J. SWEETLOVE ◽  
Michael M. BURRELL ◽  
Tom ap REES

The aim of the work described in this paper was to characterize the tubers of potato (Solanum tuberosum var. Prairie) plants that had been transformed with the Escherichiacoli ADPglucose pyrophosphorylase (EC 2.7.7.27) gene, glgC-16, under the control of a patatin promoter. Over 30 lines of transformed plants with increased ADPglucose pyrophosphorylase activity were obtained. The tubers of six of these lines were compared with those of control plants expressing the gene for β-glucuronidase. The average increase in pyrophosphorylase activity was 200%, and the highest was 400%. Western immunoblotting of tuber extracts showed that the amounts of glgC-16 protein were linearly related to the extractable activity of the ADPglucose pyrophosphorylase. Cell fractionation studies showed that the increased activity of the pyrophosphorylase in the glgC-16 tubers had a similar intracellular location, the amyloplast fraction, to that found in the control tubers. No pleiotropic changes in the maximum catalytic activities of the following enzymes could be detected in the glgC-16 tubers: sucrose synthase, fructokinase, UDPglucose pyrophosphorylase, phosphofructokinase, soluble starch synthase, starch branching enzyme, phosphoglucomutase and alkaline inorganic pyrophosphatase. The glgC-16 tubers are held to be suitable for the study of the role of ADPglucose pyrophosphorylase in the control of starch synthesis.


2022 ◽  
Vol 52 (4) ◽  
Author(s):  
Wang Su ◽  
Guangji Ye ◽  
Yun Zhou ◽  
Jian Wang

ABSTRACT: Biosynthesis is the only source of potato starch which is an important raw material for food processing, modified starch and biomass energy. However, it is not clear about the evolution of starch synthesis with tuber development in potato. The present study evaluated the differences of starch synthesis and gelatinization properties of potato tubers with different starch content. Relative to cultivars of medium and low starch content, cultivars of high starch content showed significantly higher SBEII gene expression, AGPase and SSS enzyme activity, and total starch content after middle stage of starch accumulation, and had smaller average starch granule size during whole process of tuber development, and had higher pasting temperature before late stages of tuber growth, and had lower pasting temperature after middle stage of starch accumulation. Path analysis showed that, after middle stage of starch accumulation, effects on starch gelatinization of cultivars with high, medium and low starch content represented starch synthesis enzyme activity > starch accumulation > starch granule distribution > starch synthesis enzyme gene expression, starch synthesis enzyme gene expression > starch synthesis enzyme activity > starch accumulation > starch granule distribution, starch synthesis enzyme gene expression > starch granule distribution > starch synthesis enzyme activity > starch accumulation, respectively. In the study, phases existed in the starch biosynthesis of potato tuber, and the starch quality and its formation process were different among varieties with different starch content. The findings might contribute to starch application and potato industries.


2020 ◽  
Author(s):  
hui you ◽  
Liang Xu ◽  
Ouling Zhang ◽  
Xunchao Xiang

Abstract BackgroundResistant Starch (RS) is a healthy dietary fiber that has functions of regulating diabetes, hypertension and obesity. Previous studies mainly focused on investigating RS in raw rice or cooked rice separately, which may receive different results. ResultsIn this study, ninety-nine lines from a recombinant inbred line (RIL) were selected to investigate the effects of starch synthesis-related genes on the RS content in different process status. RS content in rice will change by different processing ways. Waxy (Wx) played an important role in controlling RS content and Wxa could elevate RS content, and soluble starch synthaseII-3 (SSII-3) had an impact on RS2. Additionally, interaction of Wx and SSII-3 was responsible for variations of RS content in three sample types and RS2. Wx could affect RS in cooked rice and retrograded rice under the same SSII-3 allele. Moreover, the correlation analysis results indicated that RS was closely relative with many indexes of physicochemical properties. ConclusionsWx and SSII-3 could regulate RS content of rice, but SSII-3 especially affected RS2. The findings herein should provide useful information for molecular breeding of rice RS.


Sign in / Sign up

Export Citation Format

Share Document