scholarly journals Transcriptomic and Biochemical Analysis Reveal Integrative Pathways Between Carbon and Nitrogen Metabolism in Guzmania monostachia (Bromeliaceae) Under Drought

2021 ◽  
Vol 12 ◽  
Author(s):  
Ana Zangirolame Gonçalves ◽  
Helenice Mercier

Most epiphytes are found in low-nutrient environments with an intermittent water supply. To deal with water limitation, many bromeliads perform crassulacean acid metabolism (CAM), such as Guzmania monostachia, which shifts from C3 to CAM and can recycle CO2 from the respiration while stomata remain closed during daytime and nighttime (CAM-idling mode). Since the absorbing leaf trichomes can be in contact with organic (urea) and inorganic nutrients (NO3−, NH4+) and the urea hydrolysis releases NH4+ and CO2, we hypothesized that urea can integrate the N and C metabolism during periods of severe drought. Under this condition, NH4+ can be assimilated into amino acids through glutamine synthetase (GS), while the CO2 can be pre-fixated by phosphoenolpyruvate carboxylase (PEPC). In this context, we evaluated the foliar transcriptome of G. monostachia to compare the relative gene expression of some genes involved with CAM and the N metabolism when bromeliads were submitted to 7days of drought. We also conducted a controlled experiment with an extended water deficit period (21days) in which bromeliads were cultivated in different N sources (urea, NH4+, and NO3−). Our transcriptome results demonstrated an increment in the expression of genes related to CAM, particularly those involved in the carboxylation metabolism (PEPC1, PPCK, and NAD-MDH), the movement of malate through vacuolar membrane (ALMT9), and the decarboxylation process (PEPCK). Urea stimulated the expression of PEPC1 and ALMT9, while Urease transcripts increased under water deficit. Under this same condition, GS1 gene expression increased, indicating that the NH4+ from urea hydrolysis can be assimilated in the cytosol. We suggest that the link between C and N metabolism occurred through the supply of carbon skeleton (2-oxoglutarate, 2-OG) by the cytosolic isocitrate dehydrogenase since the number of NADP-ICDH transcripts was also higher under drought conditions. These findings indicate that while urea hydrolysis provides NH4+ that can be consumed by glutamine synthetase-cytosolic/glutamate synthase (GS1/GOGAT) cycle, the CO2 can be used by CAM, maintaining photosynthetic efficiency even when most stomata remain closed 24h (CAM-idling) as in the case of a severe water deficit condition. Thus, we suggest that urea could be used by G. monostachia as a strategy to increase its survival under drought, integrating N and C metabolism.

2009 ◽  
Vol 22 (12) ◽  
pp. 1565-1576 ◽  
Author(s):  
Estíbaliz Larrainzar ◽  
Stefanie Wienkoop ◽  
Christian Scherling ◽  
Stefan Kempa ◽  
Rubén Ladrera ◽  
...  

Regulation of symbiotic nitrogen fixation (SNF) during drought stress is complex and not yet fully understood. In the present work, the involvement of nodule C and N metabolism in the regulation of SNF in Medicago truncatula under drought and a subsequent rewatering treatment was analyzed using a combination of metabolomic and proteomic approaches. Drought induced a reduction of SNF rates and major changes in the metabolic profile of nodules, mostly an accumulation of amino acids (Pro, His, and Trp) and carbohydrates (sucrose, galactinol, raffinose, and trehalose). This accumulation was coincidental with a decline in the levels of bacteroid proteins involved in SNF and C metabolism, along with a partial reduction of the levels of plant sucrose synthase 1 (SuSy1). In contrast, the variations in enzymes related to N assimilation were found not to correlate with the reduction in SNF, suggesting that these enzymes do not have a role in the regulation of SNF. Unlike the situation in other legumes such as pea and soybean, the drought-induced inhibition of SNF in M. truncatula appears to be caused by impairment of bacteroid metabolism and N2-fixing capacity rather than a limitation of respiratory substrate.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chengfeng Zhao ◽  
Haoxue Guo ◽  
Jiarui Wang ◽  
Yifan Wang ◽  
Renhe Zhang

It is commonly known that exogenously applied melatonin can alleviate the impact of drought stress, but the mechanism used by melatonin to regulate stomatal behavior and carbon (C) and nitrogen (N) metabolism to increase drought resistance remains elusive. Herein, our aim was to investigate the influence of exogenous melatonin on the regulation of C and N metabolism in maize plants under water deficit. In this study, we analyzed stomatal behavior, the key components of C and N metabolism, and the gene expression and activity of enzymes involved in the C and N metabolism in maize plants. The results showed that the application of melatonin (100 μM) significantly increased maize growth and sustained the opening of stomata, and secondarily increased the photosynthetic capacity in maize. Under drought stress, foliar application of melatonin induced the gene transcription and activities of sucrose phosphate synthetase, ADP-glucose pyrophosphorylase, phosphoenolpyruvate carboxylase, and citrate synthase, resulting in the enhancement of sucrose and starch synthesis and the tricarboxylic acid (TCA) cycle. This enhancement in sugar biosynthesis and the TCA cycle might lead to stronger N assimilation. As anticipated, NO3– reduction and NH4+ assimilation were also strengthened after melatonin treatment under drought stress. An increase was observed in some key enzymatic activities and transcription involved in nitrogen metabolism, such as that of nitrate reductase, nitrite reductase, glutamate synthase, and glutamine synthetase, in melatonin-treated, drought-stressed maize. Moreover, melatonin attenuated the drought-induced damage by reducing protein degradation and increasing the level of proline. Conclusively, our results indicate that exogenous melatonin enhances drought tolerance in maize via promoting stomatal opening and regulating C and N metabolism and related gene expression.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yanshan Zhong ◽  
Xiaodan Lu ◽  
Zhiwei Deng ◽  
Ziqing Lu ◽  
Minghui Fu

Abstract Background Glutamine synthetase (GS) acts as a key enzyme in plant nitrogen (N) metabolism. It is important to understand the regulation of GS expression in plant. Promoters can initiate the transcription of its downstream gene. Eichhornia crassipes is a most prominent aquatic invasive plant, which has negative effects on environment and economic development. It also can be used in the bioremediation of pollutants present in water and the production of feeding and energy fuel. So identification and characterization of GS promoter in E. crassipes can help to elucidate its regulation mechanism of GS expression and further to control its N metabolism. Results A 1232 bp genomic fragment upstream of EcGS1b sequence from E. crassipes (EcGS1b-P) has been cloned, analyzed and functionally characterized. TSSP-TCM software and PlantCARE analysis showed a TATA-box core element, a CAAT-box, root specific expression element, light regulation elements including chs-CMA1a, Box I, and Sp1 and other cis-acting elements in the sequence. Three 5′-deletion fragments of EcGS1b upstream sequence with 400 bp, 600 bp and 900 bp length and the 1232 bp fragment were used to drive the expression of β-glucuronidase (GUS) in tobacco. The quantitative test revealed that GUS activity decreased with the decreasing of the promoter length, which indicated that there were no negative regulated elements in the EcGS1-P. The GUS expressions of EcGS1b-P in roots were significantly higher than those in leaves and stems, indicating EcGS1b-P to be a root-preferential promoter. Real-time Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) analysis of EcGS1b gene also showed higher expression in the roots of E.crassipes than in stems and leaves. Conclusions EcGS1b-P is a root-preferential promoter sequence. It can specifically drive the transcription of its downstream gene in root. This study will help to elucidate the regulatory mechanisms of EcGS1b tissue-specific expression and further study its other regulatory mechanisms in order to utilize E.crassipes in remediation of eutrophic water and control its overgrowth from the point of nutrient metabolism.


2021 ◽  
Vol 11 (11) ◽  
pp. 4723
Author(s):  
Rosaria Scudiero ◽  
Chiara Maria Motta ◽  
Palma Simoniello

The cleidoic eggs of oviparous reptiles are protected from the external environment by membranes and a parchment shell permeable to water and dissolved molecules. As a consequence, not only physical but also chemical insults can reach the developing embryos, interfering with gene expression. This review provides information on the impact of the exposure to cadmium contamination or thermal stress on gene expression during the development of Italian wall lizards of the genus Podarcis. The results obtained by transcriptomic analysis, although not exhaustive, allowed to identify some stress-reactive genes and, consequently, the molecular pathways in which these genes are involved. Cadmium-responsive genes encode proteins involved in cellular protection, metabolism and proliferation, membrane trafficking, protein interactions, neuronal transmission and plasticity, immune response, and transcription regulatory factors. Cold stress changes the expression of genes involved in transcriptional/translational regulation and chromatin remodeling and inhibits the transcription of a histone methyltransferase with the probable consequence of modifying the epigenetic control of DNA. These findings provide transcriptome-level evidence of how terrestrial vertebrate embryos cope with stress, giving a key to use in population survival and environmental change studies. A better understanding of the genes contributing to stress tolerance in vertebrates would facilitate methodologies and applications aimed at improving resistance to unfavourable environments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Criado-Mesas ◽  
N. Abdelli ◽  
A. Noce ◽  
M. Farré ◽  
J. F. Pérez ◽  
...  

AbstractThere is a high interest on gut health in poultry with special focus on consequences of the intestinal diseases, such as coccidiosis and C. perfringens-induced necrotic enteritis (NE). We developed a custom gene expression panel, which could provide a snapshot of gene expression variation under challenging conditions. Ileum gene expression studies were performed through high throughput reverse transcription quantitative real-time polymerase chain reaction. A deep review on the bibliography was done and genes related to intestinal health were selected for barrier function, immune response, oxidation, digestive hormones, nutrient transport, and metabolism. The panel was firstly tested by using a nutritional/Clostridium perfringens model of intestinal barrier failure (induced using commercial reused litter and wheat-based diets without exogenous supplementation of enzymes) and the consistency of results was evaluated by another experiment under a coccidiosis challenge (orally gavaged with a commercial coccidiosis vaccine, 90× vaccine dose). Growth traits and intestinal morphological analysis were performed to check the gut barrier failure occurrence. Results of ileum gene expression showed a higher expression in genes involved in barrier function and nutrient transport in chickens raised in healthy conditions, while genes involved in immune response presented higher expression in C.perfringens-challenged birds. On the other hand, the Eimeria challenge also altered the expression of genes related to barrier function and metabolism, and increased the expression of genes related to immune response and oxidative stress. The panel developed in the current study gives us an overview of genes and pathways involved in broiler response to pathogen challenge. It also allows us to deep into the study of differences in gene expression pattern and magnitude of responses under either a coccidial vaccine or a NE.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tingting Li ◽  
Weigao Yuan ◽  
Shuai Qiu ◽  
Jisen Shi

AbstractThe differential expression of genes is crucial for plant somatic embryogenesis (SE), and the accurate quantification of gene expression levels relies on choosing appropriate reference genes. To select the most suitable reference genes for SE studies, 10 commonly used reference genes were examined in synchronized somatic embryogenic and subsequent germinative cultures of Liriodendron hybrids by using quantitative real-time reverse transcription PCR. Four popular normalization algorithms: geNorm, NormFinder, Bestkeeper and Delta-Ct were used to select and validate the suitable reference genes. The results showed that elongation factor 1-gamma, histone H1 linker protein, glyceraldehyde-3-phosphate dehydrogenase and α-tubulin were suitable for SE tissues, while elongation factor 1-gamma and actin were best for the germinative organ tissues. Our work will benefit future studies of gene expression and functional analyses of SE in Liriodendron hybrids. It is also serves as a guide of reference gene selection in early embryonic gene expression analyses for other woody plant species.


2021 ◽  
Author(s):  
Xiao Wang ◽  
Xiaoli Wei ◽  
Gaoyin Wu ◽  
Shengqun Chen

Abstract The study of plant responses to increases in atmospheric carbon dioxide (CO2) concentration is crucial to understand and to predict the effect of future global climate change on plant adaptation and evolution. Increasing amount of nitrogen (N) can promote the positive effect of CO2, while how N forms would modify the degree of CO2 effect is rarely studied. The aim of this study was to determine whether the amount and form of nitrogen (N) could mitigate the effects of elevated CO2 (eCO2) on enzyme activities related to carbon (C) and N metabolism, the C/N ratio, and growth of Phoebe bournei (Hemsl.) Y.C. Yang. One-year-old P. bournei seedlings were grown in an open-top air chamber under either an ambient CO2 (aCO2) (350 ± 70 μmol•mol−1) or an eCO2 (700 ± 10 μmol•mol−1) concentration and cultivated in soil treated with either moderate (0.8 g per seedling) or high applications (1.2 g per seedling) of nitrate or ammonium. In seedlings treated with a moderate level of nitrate, the activities of key enzymes involved in C and N metabolism (i.e., Rubisco, Rubisco activase and glutamine synthetase) were lower under eCO2 than under aCO2. By contrast, key enzyme activities (except GS) in seedlings treated with high nitrate or ammonium were not significantly different between aCO2 and eCO2 or higher under eCO2 than under aCO2. The C/N ratio of seedlings treated with moderate or high nitrate under eCO2was significantly changed compared with the seedlings grown under aCO2, whereas the C/N ratio of seedlings treated with ammonium was not significantly different between aCO2 and eCO2. Therefore, under eCO2, application of ammonium can be beneficial C and N metabolism and mitigate effects on the C/N ratio.


Sign in / Sign up

Export Citation Format

Share Document