scholarly journals Differential Expression of lncRNAs and miRNAs Between Self-Rooting Juvenile and Donor Clones Unveils Novel Insight Into the Molecular Regulation of Rubber Biosynthesis in Hevea brasiliensis

2022 ◽  
Vol 12 ◽  
Author(s):  
Hui-Liang Li ◽  
Ying Wang ◽  
Dong Guo ◽  
Jia-Hong Zhu ◽  
Shi-Qing Peng

The rubber tree (Hevea brasiliensis Muell. Arg.) is a tropical tree species that produce natural rubber. Self-rooted juvenile clones (SRJCs) are novel rubber tree planting materials developed through primary somatic embryogenesis. SRJCs have a higher rubber yield compared with donor clones (DCs). The molecular basis underlying increased rubber yield in SRJCs remains largely unknown. Here, the latex from SRJCs and DCs were collected for strand-specific and small RNA-seq methods. A total of 196 differentially expressed long noncoding RNAs (DELs), and 11 differentially expressed microRNAs were identified in latex between SRJCs and DCs. Targeted genes of DELs were markedly enriched for various biological pathways related to plant hormone signal transduction, photosynthesis, glutathione metabolism, and amino acids biosynthesis. DELs probably acted as cis-acting regulation was calculated, and these DELs relevant to potentially regulate rubber biosynthesis, reactive oxygen species metabolism, and epigenetic modification. Furthermore, the DELs acting as microRNA targets were studied. The interaction of microRNA and DELs might involve in the regulation of natural rubber biosynthesis.

Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 674
Author(s):  
Tomoko Yamaguchi ◽  
Yukio Kurihara ◽  
Yuko Makita ◽  
Emiko Okubo-Kurihara ◽  
Ami Kageyama ◽  
...  

Natural rubber is the main component of latex obtained from laticifer cells of Hevea brasiliensis. For improving rubber yield, it is essential to understand the genetic molecular mechanisms responsible for laticifer differentiation and rubber biosynthesis. Jasmonate enhances both secondary laticifer differentiation and rubber biosynthesis. Here, we carried out time-course RNA-seq analysis in suspension-cultured cells treated with methyljasmonic acid (MeJA) to characterize the gene expression profile. Gene Ontology (GO) analysis showed that the term “cell differentiation” was enriched in upregulated genes at 24 h after treatment, but inversely, the term was enriched in downregulated genes at 5 days, indicating that MeJA could induce cell differentiation at an early stage of the response. Jasmonate signaling is activated by MYC2, a basic helix–loop–helix (bHLH)-type transcription factor (TF). The aim of this work was to find any links between transcriptomic changes after MeJA application and regulation by TFs. Using an in vitro binding assay, we traced candidate genes throughout the whole genome that were targeted by four bHLH TFs: Hb_MYC2-1, Hb_MYC2-2, Hb_bHLH1, and Hb_bHLH2. The latter two are highly expressed in laticifer cells. Their physical binding sites were found in the promoter regions of a variety of other TF genes, which are differentially expressed upon MeJA exposure, and rubber biogenesis-related genes including SRPP1 and REF3. These studies suggest the possibilities that Hb_MYC2-1 and Hb_MYC2-2 regulate cell differentiation and that Hb_bHLH1 and Hb_bHLH2 promote rubber biosynthesis. We expect that our findings will help to increase natural rubber yield through genetic control in the future.


2021 ◽  
Vol 8 (03) ◽  
pp. 161-167
Author(s):  
Andi Nur Cahyo

Fulfilling water requirement is one of the important factors for a successful production of rubber tree planting materials. Research on the irrigation requirement for young rubber trees is crucial to determine the amount of water required for an optimum plant growth. The aim of this study was to determine the amount of water needed by one whorl rubber planting material to compensate the amount of evapotranspiration, as well as to estimate the crop coefficient value (kc). The research was conducted at the Indonesian Rubber Research Institute on July 2021. Daily evapotranspiration (ETc) of rubber planting materials of clone “PB 260”, “RRIC 100”, and “IRR 112” planted in polybag size 13 cm x 35 cm were measured by weighing the planting materials daily. Evapotranspiration for the reference crop was collected from the Indonesian Rubber Research Institute climatological station. Our study showed that the amount of water required by each rubber planting material was 92.21 mL per day per polybag when the mean of daily reference evapotranspiration (ETo) was 3.67 mm per day. Therefore, the crop coefficient (kc) of one whorl rubber planting material arranged sparsely was ± 0.32. This kc value can be used as a base to calculate water requirement of one whorl rubber planting material based on the daily reference evapotranspiration (ETo).


Author(s):  
David Wolyn ◽  
Gregory Innes

Russian dandelion (Taraxacum kok-saghyz) produces natural rubber which can complement the world’s supply of this strategic commodity, derived mainly from the Para rubber tree (Hevea brasiliensis). Four cycles of half-sib family recurrent selection conducted previously in russian dandelion improved rubber yield nearly 50%. The objectives of this research were to continue selection for four additional cycles and evaluate progress from eight generations of breeding, and assess the potential for future gains. Rubber yield increased from 0.205 to 0.378 g/plant from Cycle 0 (C0) to C8, representing an 84% improvement, or 10% per cycle. Increases from C0 to C4 were similar to those from C4 to C8. Root dry weight did not increase from selection and improved yield only resulted from enhancing rubber percentage which changed from 4.35 to 7.62%. Selection response has not plateaued and phenotypic variation has not decreased, indicating continued gains can occur with additional breeding.


1994 ◽  
Vol 67 (3) ◽  
pp. 537-548 ◽  
Author(s):  
Abdul Aziz S. A. Kadir

Abstract This paper will attempt to highlight the various advances made to date in the production and processing of natural rubber (NR). The commercially planted rubber tree, Hevea brasiliensis, can yield as high as 3,000 kg of rubber per hectare in contrast to the 500 kg rubber per hectare obtained from the wild Amazonian rubber trees. The high yield of commercial rubber trees is attributed to the successful breeding program, efficient development of agronomic and crop management practices and proper exploitation systems. Today, the Hevea brasiliensis trees not only contribute to the supply of world natural rubber, but also to the ever increasing demand of tropical timber. Latex extracted from the rubber tree is processed to meet the specific requirements of the consumers. In the area of processing, emphasis is on the production of NR as an industrial raw material with improved quality and consistency. Efforts are also placed on processing efficiency, optimum product mix and production of value added modified NR such as epoxidized and deproteinized NR. The processing activities also take into consideration the control of processing effluent with appropriate effluent treatments or conversion of effluent to useful materials.


2014 ◽  
Vol 87 (3) ◽  
pp. 451-458 ◽  
Author(s):  
Cheng Ching K. Chiang ◽  
Balaka Barkakaty ◽  
Judit E. Puskas ◽  
Wenshuang Xie ◽  
Katrina Cornish ◽  
...  

ABSTRACT The superior properties of natural rubber (cis-1,4-polyisoprene [NR]) are a function of its structure and composition, properties that still remain a mystery and that are irreplaceable by any synthetic rubber. NR from guayule (Parthenium argentatum) has been gaining special interest for its hypoallergenic properties while maintaining superior mechanical properties that are commonly associated with the Brazilian rubber tree (Hevea brasiliensis), the most common source of NR. Techniques exist to isolate washed rubber particles (WRPs) that contain enzymatically active rubber transferase, to study NR biosynthesis, and previous work on the in vitro NR growth in Hevea has demonstrated the presence of around 50 wt% of a low molecular weight ([MW], Mn <10 000 g/mol) fraction. Structural and compositional analyses of this low MW fraction in Hevea are challenging due to the high protein content. We discuss the analysis and composition of guayule latex and WRPs using high-resolution Size Exclusion Chromatography. We also discuss the composition of the soluble fraction of inactive guayule latex using matrix-assisted laser desorption ionization/time of flight mass spectrometry.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chen Liang ◽  
Bei Zhang ◽  
Yun Zhou ◽  
Hongyan Yin ◽  
Bang An ◽  
...  

The rubber tree (Hevea brasiliensis) is a tropical perennial crop for the primary source of natural rubber. Colletotrichum gloeosporioides from Hevea brasiliensis (C. gloeosporioides Hb) and Colletotrichum acutatum from Hevea brasiliensis (C. acutatum Hb) are the causal agents of rubber tree anthracnose and lead to serious loss of natural rubber production. Inoculation tests showed that C. gloeosporioides Hb possessed higher pathogenicity than C. acutatum Hb to the rubber tree. Genomic analysis revealed that an unknown gene, named CgNPG1 (a Novel Pathogenic Gene 1), was presented in the genome of C. gloeosporioides Hb but not identified in C. acutatum Hb. CgNPG1 was predicted to encode a small secretory protein without any conserved domain. To investigate the functions of CgNPG1 in C. gloeosporioides Hb and in C. acutatum Hb, the gene deletion and overexpression mutants were generated. The phenotype analysis showed that deletion of CgNPG1 led to changed conidia morphology, decreased mycelial growth, conidiation, conidia germination rate, appressorium formation rate, and pathogenicity of C. gloeosporioides Hb to the rubber tree. Meanwhile, heterogeneous expression of CgNPG1 in C. acutatum Hb significantly changed the conidia morphology and improved the mycelial growth rate, conidiation, conidia germination rate, appressorium formation rate, and the pathogenicity of C. acutatum Hb to the rubber tree. Consistently, CgNPG1 increased the expression level of CaCRZ1 and CaCMK1 in C. acutatum Hb. These data suggested that CgNPG1 contributed to mycelial growth, conidiation, the development of invasive structures, and the pathogenicity of Colletotrichum to the rubber tree, which might be related to the modulation of CaCRZ1 and mitogen-activated protein kinase CMK1. Our results provided new insight into CgNPG1 in regulating growth and pathogenicity of the Colletotrichum spp.


2020 ◽  
Vol 21 (15) ◽  
pp. 5282 ◽  
Author(s):  
Li Yu ◽  
Boxuan Yuan ◽  
Lingling Wang ◽  
Yong Sun ◽  
Guohua Ding ◽  
...  

Natural rubber is an important industrial material, which is obtained from the only commercially cultivated rubber tree, Hevea brasiliensis. In rubber latex production, ethylene has been extensively used as a stimulant. Recent research showed that post-translational modifications (PTMs) of latex proteins, such as phosphorylation, glycosylation and ubiquitination, are crucial in natural rubber biosynthesis. In this study, comparative proteomics was performed to identify the glycosylated proteins in rubber latex treated with ethylene for different days. Combined with Pro-Q Glycoprotein gel staining and mass spectrometry techniques, we provided the first visual profiling of glycoproteomics of rubber latex and finally identified 144 glycosylated protein species, including 65 differentially accumulated proteins (DAPs) after treating with ethylene for three and/or five days. Gene Ontology (GO) functional annotation showed that these ethylene-responsive glycoproteins are mainly involved in cell parts, membrane components and metabolism. Pathway analysis demonstrated that these glycosylated rubber latex proteins are mainly involved in carbohydrate metabolism, energy metabolism, degradation function and cellular processes in rubber latex metabolism. Protein–protein interaction analysis revealed that these DAPs are mainly centered on acetyl-CoA acetyltransferase and hydroxymethylglutaryl-CoA synthase (HMGS) in the mevalonate pathway for natural rubber biosynthesis. In our glycoproteomics, three protein isoforms of HMGS2 were identified from rubber latex, and only one HMGS2 isoform was sharply increased in rubber latex by ethylene treatment for five days. Furthermore, the HbHMGS2 gene was over-expressed in a model rubber-producing grass Taraxacum Kok-saghyz and rubber content in the roots of transgenic rubber grass was significantly increased over that in the wild type plant, indicating HMGS2 is the key component for natural rubber production.


Sign in / Sign up

Export Citation Format

Share Document