scholarly journals Metabolic Disturbance Induced by the Embryo Contributes to the Formation of Chalky Endosperm of a Notched-Belly Rice Mutant

2022 ◽  
Vol 12 ◽  
Author(s):  
Yang Tao ◽  
Atta Mohi Ud Din ◽  
Lu An ◽  
Hao Chen ◽  
Ganghua Li ◽  
...  

Grain chalkiness is a key quality trait of the rice grain, whereas its underlying mechanism is still not thoroughly understood because of the complex genetic and environmental interactions. We identified a notched-belly (NB) mutant that has a notched-line on the belly of grains. The line dissects the endosperm into two distinct parts, the upper translucent part, and the bottom chalky part in the vicinity of the embryo. Using this mutant, our previous studies clued the negative influence of embryo on the biochemical makeup of the endosperm, suggesting the need for the in-depth study of the embryo effect on the metabolome of developing endosperm. This study continued to use the NB mutant to evolve a novel comparison method to clarify the role of embryo in the formation of a chalky endosperm. Grain samples of the wild-type (WT) and NB were harvested at 10, 20, and 30 days after fertilization (DAF), and then divided into subsamples of the embryo, the upper endosperm, and the bottom endosperm. Using non-targeted metabolomics and whole-genome RNA sequencing (RNA-seq), a nearly complete catalog of expressed metabolites and genes was generated. Results showed that the embryo impaired the storage of sucrose, amino acid, starch, and storage proteins in the bottom endosperm of NB by enhancing the expression of sugar, amino acids, and peptide transporters, and declining the expression of starch, prolamin, and glutelin synthesis-related genes. Importantly, the competitive advantage of the developing embryo in extracting the nutrients from the endosperm, transformed the bottom endosperm into an “exhaustive source” by diverting the carbon (C) and nitrogen (N) metabolism from synthetic storage to secondary pathways, resulting in impaired filling of the bottom endosperm and subsequently the formation of chalky tissue. In summary, this study reveals that embryo-induced metabolic shift in the endosperm is associated with the occurrence of grain chalkiness, which is of relevance to the development of high-quality rice by balancing the embryo–endosperm interaction.

2009 ◽  
Vol 31 (6) ◽  
pp. 563-572 ◽  
Author(s):  
Li-Jun ZHOU ◽  
Ling JIANG ◽  
Hu-Qu ZHAI ◽  
Jian-Min WAN

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1477
Author(s):  
Asadullah Khan ◽  
Sanaullah Jalil ◽  
Huan Cao ◽  
Yohannes Tsago ◽  
Mustapha Sunusi ◽  
...  

The anthocyanin biosynthesis attracts strong interest due to the potential antioxidant value and as an important morphological marker. However, the underlying mechanism of anthocyanin accumulation in plant tissues is not clearly understood. Here, a rice mutant with a purple color in the leaf blade, named pl6, was developed from wild type (WT), Zhenong 41, with gamma ray treatment. By map-based cloning, the OsPL6 gene was located on the short arm of chromosome 6. The multiple mutations, such as single nucleotide polymorphism (SNP) at −702, −598, −450, an insertion at −119 in the promoter, three SNPs and one 6-bp deletion in the 5′-UTR region, were identified, which could upregulate the expression of OsPL6 to accumulate anthocyanin. Subsequently, the transcript level of structural genes in the anthocyanin biosynthesis pathway, including OsCHS, OsPAL, OsF3H and OsF3′H, was elevated significantly. Histological analysis revealed that the light attenuation feature of anthocyanin has degraded the grana and stroma thylakoids, which resulted in poor photosynthetic efficiency of purple leaves. Despite this, the photoabatement and antioxidative activity of anthocyanin have better equipped the pl6 mutant to minimize the oxidative damage. Moreover, the contents of abscisic acid (ABA) and cytokanin (CK) were elevated along with anthocyanin accumulation in the pl6 mutant. In conclusion, our results demonstrate that activation of OsPL6 could be responsible for the purple coloration in leaves by accumulating excessive anthocyanin and further reveal that anthocyanin acts as a strong antioxidant to scavenge reactive oxygen species (ROS) and thus play an important role in tissue maintenance.


2021 ◽  
Author(s):  
Weifeng Yang ◽  
Liang Xiong ◽  
Jiayan Liang ◽  
Qingwen Hao ◽  
Xin Luan ◽  
...  

Abstract Background: Rice varieties are required to have high yield and good grain quality. Grain chalkiness and grain shape are two important traits of rice grain quality. Low chalkiness slender grains are preferred by most rice consumers. Here, we dissected two closely linked quantitative trait loci (QTLs) controlling grain chalkiness and grain shape on rice chromosome 8 by substitution mapping. Results: Two closely linked QTLs controlling grain chalkiness and grain shape were identified using single-segment substitution lines (SSSLs). The two QTLs were then dissected on rice chromosome 8 by secondary substitution mapping. qPGC8.1 was located in an interval of 1382.6 kb and qPGC8.2 was mapped in a 2057.1 kb region. The maximum distance of the two QTLs was 4.37 Mb and the space distance of two QTL intervals was 0.72 Mb. qPGC8.1 controlled grain chalkiness and grain width. qPGC8.2 was responsible for grain chalkiness and for grain length and grain width. The additive effects of qPGC8.1 and qPGC8.2 on grain chalkiness were not affected by heat stress. Conclusions: Two closely linked QTLs qPGC8.1 and qPGC8.2 were dissected on rice chromosome 8. They controlled the phenotypes of grain chalkiness and grain shape. The two QTLs were insensitive to high temperature.


Amylase ◽  
2018 ◽  
Vol 2 (1) ◽  
pp. 30-38 ◽  
Author(s):  
Toshiaki Mitsui ◽  
Akihito Ochiai ◽  
Hiromoto Yamakawa ◽  
Kentaro Kaneko ◽  
Aya Kitajima-Koga ◽  
...  

Abstract α-Amylases have been of interest in diverse fields for many years because of their importance in basic biology, agriculture, and industry. Starch hydrolysis in plants has been studied extensively in germinating cereal seeds. It is generally accepted that α-amylases are secretory enzymes with a pivotal role in the breakdown of starch reserves in the endosperm. Intriguingly, however, recent investigations reveal that some α-amylases degrade starch in the plastids of living cells. The recent solving of the crystal structure of rice AmyI-1 isoform shows that the binding pocket of starch binding site 1 situated outside of the active site cleft interacts with the substances other than oligosaccharides. These findings provided novel insights into structural and cell biological aspects of α-amylase functions in intracellular transport, organelle targeting, and organ-specific actions. Under global warming, abnormal high temperatures during rice grain filling increase grain chalkiness, resulting in yield loss. Intensive “omics” analyses of developing caryopses and mature grains grown under heat stress showed the downregulation of starch synthesis enzymes and the upregulation of α-amylases. Transgenic studies using ectopic overexpression and suppression of α-amylase revealed that α-amylase is a key factor in grain chalkiness. Here we discuss unique new functions of α-amylase in rice cells.


2014 ◽  
Vol 14 (1) ◽  
pp. 163 ◽  
Author(s):  
Zhaomiao Lin ◽  
Xincheng Zhang ◽  
Xiaoyu Yang ◽  
Ganghua Li ◽  
She Tang ◽  
...  

Author(s):  
Engku Hasmah Engku Abdullah ◽  
Azizah Misran ◽  
Muhammad Nazmin Yaapar ◽  
Mohd Rafii Yusop ◽  
Asfaliza Ramli

Silicon (Si) is a micronutrient that can increase the resistance of certain plants against multiple biotic or abiotic stresses. It is known that Si has a beneficial effect on plant growth, beginning in the soil, which could lead to a good crop yield. Despite its benefits, Si is not listed among the generally essential elements or nutrients for rice production in many countries such as Malaysia. This review discusses the ability to uptake Si and its benefits on rice. Environmental factors affect rice production, and among the factors, high temperature has been shown to disrupt the physiological development of rice grain, which contributes to chalkiness. Chalkiness is an undesirable trait that decreases grain’s value, milling, cooking, and eating quality. The application of Si could ameliorate rice grain quality, thus providing a valuable reference for Si fertiliser use in high-quality rice production. This review also presents an update on the potentials of Si in improving the rice yield and grain quality, including Si’s ability to minimise grain chalkiness. Therefore, it is anticipated that Si applications will increase rice yield and grain quality and help to reduce chalkiness.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1575
Author(s):  
Chu-Xin Wang ◽  
Cheng-Chao Zhu ◽  
Chen-Ya Lu ◽  
Yong Yang ◽  
Qian-Feng Li ◽  
...  

Rice mutants with altered starch components and properties are important genetic resources for grain quality and starch structure analysis. Accordingly, in the present study, two mutants of the transcription factor OsbZIP09 were generated (osbzip09a and osbzip09b), and the rice grain quality and physicochemical starch properties of the mutant and wild-type lines were compared. The OsbZIP09 mutants exhibit a chalky grain owing to loosely packed, small, spherical starch granules in the ventral region of the endosperm. Furthermore, grain-quality profile analysis showed that OsbZIP09 deficiency leads to increased apparent amylose content but decreased gel consistency. Structural analysis of the mutant starches revealed that the mutant rice lines contain more amylopectin short chains and fewer intermediate chains, leading to lower crystallinity and lower gelatinization properties than those of the wild-type rice. Moreover, the OsbZIP09 mutants rice presented a significantly higher pasting curve and corresponding parameters than the wild-type rice. The results from this work strongly indicate that the transcription factor OsbZIP09 plays an important role in rice grain quality and starch fine structure modification, and extend our understanding of starch biosynthesis in rice endosperm.


2017 ◽  
Vol 63 ◽  
pp. 18-26
Author(s):  
Nguyen Thi Lang ◽  
Phan Ho Truc Giang ◽  
Pham Thi Thu Ha ◽  
Tran Bao Toan ◽  
Truong Anh Phuong ◽  
...  

Chalkiness is a major constraint on rice production because it is one of the key factors determining grain quality (appearance, processing, milling, storing, eating, and cooking quality) and price. In this study, we conducted grain chalkiness gene identification using co-dominant insertion/deletion (INDEL) markers and SSR marker combination on 50 different varieties. The application results in 7 InDel markers and SSR marker on chromosome 7 were recorded. Three primers, InDel 5, InDel 14 and RM21938, associated with grain chalkiness. For the InDel 5 primer, the amplification product was 100%. Use of primer InDel 5 in detection and evaluation of genotype to the chalkiness trait of rice grain on 50 rice varieties indicated the suitability level with phenotypic evaluation was 86% and the unsuitability level was 14%. For the InDel 14 primer, the amplification products were 100%. The suitability with phenotypic assessment was 84% and the unsuitability was 16%. For the RM21938 primer, the amplification product was 94%. The suitability with phenotypic assessment was 76% and the unsuitability was 24%. Thirteen of the selected varieties had grain chalkiness gene both InDel 5, InDel 14 and RM21938. Total 13 varieties were detected from InDel 5, InDel 14 and RM12938 primer combinations also showed high efficiency of the InDel technique in identifying chalkiness gene in rice grain. A cluster analysis was performed and a dendrogram was constructed which evinced the nature of phylogenetic classification among the genotypes of the varieties. These markers could be used for developing quality of rice in breeding program.


Sign in / Sign up

Export Citation Format

Share Document