scholarly journals Darkfield and Fluorescence Macrovision of a Series of Large Images to Assess Anatomical and Chemical Tissue Variability in Whole Cross-Sections of Maize Stems

2021 ◽  
Vol 12 ◽  
Author(s):  
Marie Berger ◽  
Marie-Françoise Devaux ◽  
David Legland ◽  
Cécile Barron ◽  
Benoit Delord ◽  
...  

The proportion and composition of plant tissues in maize stems vary with genotype and agroclimatic factors and may impact the final biomass use. In this manuscript, we propose a quantitative histology approach without any section labelling to estimate the proportion of different tissues in maize stem sections as well as their chemical characteristics. Macroscopic imaging was chosen to observe the entire section of a stem. Darkfield illumination was retained to visualise the whole stem cellular structure. Multispectral autofluorescence images were acquired to detect cell wall phenolic compounds after UV and visible excitations. Image analysis was implemented to extract morphological features and autofluorescence pseudospectra. By assimilating the internode to a cylinder, the relative proportions of tissues in the internode were estimated from their relative areas in the sections. The approach was applied to study a series of 14 maize inbred lines. Considerable variability was revealed among the 14 inbred lines for both anatomical and chemical traits. The most discriminant morphological descriptors were the relative amount of rind and parenchyma tissues together with the density and size of the individual bundles, the area of stem and the parenchyma cell diameter. The rind, as the most lignified tissue, showed strong visible-induced fluorescence which was line-dependant. The relative amount of para-coumaric acid was associated with the UV-induced fluorescence intensity in the rind and in the parenchyma near the rind, while ferulic acid amount was significantly correlated mainly with the parenchyma near the rind. The correlation between lignin and the tissue pseudospectra showed that a global higher amount of lignin resulted in a higher level of lignin fluorescence whatever the tissues. We demonstrated here the potential of darkfield and autofluorescence imaging coupled with image analysis to quantify histology of maize stem and highlight variability between different lines.

Author(s):  
D. E. Becker

An efficient, robust, and widely-applicable technique is presented for computational synthesis of high-resolution, wide-area images of a specimen from a series of overlapping partial views. This technique can also be used to combine the results of various forms of image analysis, such as segmentation, automated cell counting, deblurring, and neuron tracing, to generate representations that are equivalent to processing the large wide-area image, rather than the individual partial views. This can be a first step towards quantitation of the higher-level tissue architecture. The computational approach overcomes mechanical limitations, such as hysterisis and backlash, of microscope stages. It also automates a procedure that is currently done manually. One application is the high-resolution visualization and/or quantitation of large batches of specimens that are much wider than the field of view of the microscope.The automated montage synthesis begins by computing a concise set of landmark points for each partial view. The type of landmarks used can vary greatly depending on the images of interest. In many cases, image analysis performed on each data set can provide useful landmarks. Even when no such “natural” landmarks are available, image processing can often provide useful landmarks.


Author(s):  
T.B. Ball ◽  
W.M. Hess

It has been demonstrated that cross sections of bundles of hair can be effectively studied using image analysis. These studies can help to elucidate morphological differences of hair from one region of the body to another. The purpose of the present investigation was to use image analysis to determine whether morphological differences could be demonstrated between male and female human Caucasian terminal scalp hair.Hair samples were taken from the back of the head from 18 caucasoid males and 13 caucasoid females (Figs. 1-2). Bundles of 50 hairs were processed for cross-sectional examination and then analyzed using Prism Image Analysis software on a Macintosh llci computer. Twenty morphological parameters of size and shape were evaluated for each hair cross-section. The size parameters evaluated were area, convex area, perimeter, convex perimeter, length, breadth, fiber length, width, equivalent diameter, and inscribed radius. The shape parameters considered were formfactor, roundness, convexity, solidity, compactness, aspect ratio, elongation, curl, and fractal dimension.


2012 ◽  
Vol 27 (2) ◽  
pp. 264-269 ◽  
Author(s):  
Christian Lorbach ◽  
Ulrich Hirn ◽  
Johannes Kritzinger ◽  
Wolfgang Bauer

Abstract We present a method for 3D measurement of fiber cross sectional morphology from handsheets. An automated procedure is used to acquire 3D datasets of fiber cross sectional images using an automated microtome and light microscopy. The fiber cross section geometry is extracted using digital image analysis. Simple sample preparation and highly automated image acquisition and image analysis are providing an efficient tool to analyze large samples. It is demonstrated that if fibers are tilted towards the image plane the images of fiber cross sections are always larger than the true fiber cross section geometry. In our analysis the tilting angles of the fibers to the image plane are measured. The resulting fiber cross sectional images are distorted to compensate the error due to fiber tilt, restoring the true fiber cross sectional shape. We use an approximated correction, the paper provides error estimates of the approximation. Measurement results for fiber wall thickness, fiber coarseness and fiber collapse are presented for one hardwood and one softwood pulp.


2017 ◽  
Vol 168 (3) ◽  
pp. 127-133
Author(s):  
Matthew Parkan

Airborne LiDAR data: relevance of visual interpretation for forestry Airborne LiDAR surveys are particularly well adapted to map, study and manage large forest extents. Products derived from this technology are increasingly used by managers to establish a general diagnosis of the condition of forests. Less common is the use of these products to conduct detailed analyses on small areas; for example creating detailed reference maps like inventories or timber marking to support field operations. In this context, the use of direct visual interpretation is interesting, because it is much easier to implement than automatic algorithms and allows a quick and reliable identification of zonal (e.g. forest edge, deciduous/persistent ratio), structural (stratification) and point (e.g. tree/stem position and height) features. This article examines three important points which determine the relevance of visual interpretation: acquisition parameters, interactive representation and identification of forest characteristics. It is shown that the use of thematic color maps within interactive 3D point cloud and/or cross-sections makes it possible to establish (for all strata) detailed and accurate maps of a parcel at the individual tree scale.


1986 ◽  
Vol 6 (6) ◽  
pp. 391-402 ◽  
Author(s):  
Mark L. Campbell ◽  
Nick Furio ◽  
Paul J. Dagdigian

Chemiluminescence cross sections for reaction of the individual spin–orbit states of metastable Ca(PJ03) with CH3I, CH2I2, and SF6 have been determined by the use of optical pumping state selection. This technique was also used to separate the chemiluminescence arising from the two excited metastable Ca 3P0 and 1D states. The spin–orbit dependence of the chemiluminescence pathway was found to be substantial for the CH3I and CH2I2 reactions and similar to that previously observed for halogen diatom and alkyl bromide reagents. By contrast, no spin–orbit effect was observed for Ca(3P0)+SF6. These results are discussed in terms of our previously presented model for the origin of spin–orbit effects in chemical reactions.


2011 ◽  
Vol 301 (4) ◽  
pp. R916-R925 ◽  
Author(s):  
Krystyna Banas ◽  
Charlene Clow ◽  
Bernard J. Jasmin ◽  
Jean-Marc Renaud

It has long been suggested that in skeletal muscle, the ATP-sensitive K+ channel (KATP) channel is important in protecting energy levels and that abolishing its activity causes fiber damage and severely impairs function. The responses to a lack of KATP channel activity vary between muscles and fibers, with the severity of the impairment being the highest in the most glycolytic muscle fibers. Furthermore, glycolytic muscle fibers are also expected to face metabolic stress more often than oxidative ones. The objective of this study was to determine whether the t-tubular KATP channel content differs between muscles and fiber types. KATP channel content was estimated using a semiquantitative immunofluorescence approach by staining cross sections from soleus, extensor digitorum longus (EDL), and flexor digitorum brevis (FDB) muscles with anti-Kir6.2 antibody. Fiber types were determined using serial cross sections stained with specific antimyosin I, IIA, IIB, and IIX antibodies. Changes in Kir6.2 content were compared with changes in CaV1.1 content, as this Ca2+ channel is responsible for triggering Ca2+ release from sarcoplasmic reticulum. The Kir6.2 content was the lowest in the oxidative soleus and the highest in the glycolytic EDL and FDB. At the individual fiber level, the Kir6.2 content within a muscle was in the order of type IIB > IIX > IIA ≥ I. Interestingly, the Kir6.2 content for a given fiber type was significantly different between soleus, EDL, and FDB, and highest in FDB. Correlations of relative fluorescence intensities from the Kir6.2 and CaV1.1 antibodies were significant for all three muscles. However, the variability in content between the three muscles or individual fibers was much greater for Kir6.2 than for CaV1.1. It is suggested that the t-tubular KATP channel content increases as the glycolytic capacity increases and as the oxidative capacity decreases and that the expression of KATP channels may be linked to how often muscles/fibers face metabolic stress.


1986 ◽  
Vol 251 (6) ◽  
pp. H1324-H1332 ◽  
Author(s):  
A. R. Pries ◽  
K. Ley ◽  
P. Gaehtgens

Microvessel hematocrits and diameters were determined in each vessel segment between bifurcations of three complete microvascular networks in rat mesentery. Classification of the segments as arteriolar, venular, or arteriovenular (av) was based on flow direction at branch points. Photographic and videomicroscopic mapping was used to obtain quantitative information on the architecture and topology of the networks. This topological information allowed the analysis of hematocrit distribution within a series of consecutive-flow cross sections, each of which carried the total flow through the network. The observed reduction of mean hematocrit in the more peripheral cross sections is explained by the presence of a “vessel” and a “network” Fahraeus effect. The vessel Fahraeus effect results from velocity difference between red cells and blood within the individual vessel segments due to the existing velocity and cell concentration profiles. The network Fahraeus effect is based on the velocity difference of red cells and blood caused by velocity and hematocrit heterogeneity between the vessels constituting any of the complete-flow cross sections. The network Fahraeus effect is found to account for approximately 20% of the total hematocrit reduction and increases toward the most distal cross sections.


Author(s):  
Jerzy Nowaczewski ◽  
Milena Kita ◽  
Justyna Świeczak ◽  
Jacek Rudnicki

The paper describes methods for the explosive hardening of metals which were performed with a view to increasing the hardness of previously obtained composites, as well as treatment of their surface layers to increase the efficiency of further thermochemical treatment. Typical systems for explosive hardening of metals and the construction of current systems, are discussed. The resulting effects of explosive hardening are illustrated with before and after diagrams of microhardness distributions in cross-sections of the processed composites hardening. In a further processing stage, the tested composite samples were subjected to ion nitriding. As a result of this process, in addition to the typical increase in hardness of the individual layers, an intermediate phase with a distinctly higher hardness was observed in the junction zone. Preliminary analysis of the photographs and the results from a scanning electron microscope (SEM) with an energy dispersive spectroscopy (EDS) attachment suggests that the particularly beneficial properties of the composites are attributed to the presence of the intermetallic layer.


1992 ◽  
Vol 66 (1) ◽  
pp. 148-156 ◽  
Author(s):  
Donald R. Chesnut ◽  
James C. Cobb ◽  
Stephen F. Greb

A sequence of unusual vertical tubes, arranged in multiple groups, and each tube several meters high occurs in the Middlesboro Member of the Lee Formation (Lower Pennsylvanian). These structures are controversial with various interpretations suggesting either plant or animal origin. Observations supporting a plant origin include: 1) numerous C- and D-shaped, and multichambered tube cross sections are similar to fern and seed fern structures, 2) numerous membrane relicts loosely enclosing the tubes are similar to fern and seed fern tissues, 3) microscopic bundles are observed in cross-sectional thin sections, 4) presence of carbonaceous material and reported fecal pellets over a vertical distance in excess of 5 m are consistent with deteriorating plant material, not escape structures, 5) tubes are composed of casts and molds, but lack spreite or other features typical of escape structures, 6) tubes occur in clusters about one meter in diameter and are associated with coaly material at their base, which suggests that the clusters represent trees, 7) other trace fossils are absent in the enclosing sandstone, 8) tubes branch upward, which is a common structure in plants but unlikely in escape structures, 9) a coalified root structure was found at the base of the sandstone, and 10) all the tubes extend from the bottom of the sandstone to the top. The probability of burrowing animals escaping through as much as 8 m of sand with 100 percent survivorship is low.The structures may represent a stand of pteridosperms with each “tree” approximately 1–1.5 m in diameter. The individual pipe-organ structures represent aerial stems, shoots, and adventitious roots; each cluster of pipe-organ structures represents a single tree.Based upon sedimentologic features such as presence of 1) channel form, 2) scoured base, and 3) fining-upward sequence, we interpret the sandstone containing the pipe-organ structures to have been deposited in a sandy fluvial or tidal channel. The unidirectional cross-bed dips, poor sorting, occurrence only of very restrictive fauna and terrestrial flora, position of the sandstone above a possible floodplain facies, and lack of characteristic tidal structures suggest that the sandstone is more probably a sandy fluvial channel that may have minor tidal influence.


2014 ◽  
Vol 487 ◽  
pp. 440-443
Author(s):  
Zhan Xu Wang

A tube with varying cross sections can capture some essential features of the motion of foam in porous media. In this paper, experiments were carried out concerning a moving bubbles train through cylindrical ducts with sinusoidal cross-section. The test tube has total length of 1.14 m and has constrictions at interval of 0.0095 m. The visual images of a single lamella motion were recorded and were interpreted. It is found the lamella decelerates in the diverging portion while accelerates in the converging part of the tube.


Sign in / Sign up

Export Citation Format

Share Document