scholarly journals A Review of Cognitive Changes During Acute Aerobic Exercise

2021 ◽  
Vol 12 ◽  
Author(s):  
Julie A. Cantelon ◽  
Grace E. Giles

A growing body of work has investigated the effects of acute, or single bouts of, aerobic exercise on cognitive function. However, review of this research has largely focused on changes following exercise, with less focus on cognitive changes during exercise. The purpose of this review is to discuss the critical characteristics of this literature to date, including: (1) what has been done, (2) what has been found, and (3) what is next. Furthermore, previous meta-analytic reviews have demonstrated there is a small positive effect on cognition when measured during exercise, with executive functions showing the largest effects. However, these reviews group executive functions together. Here we explore how inhibition, working memory and cognitive flexibility are individually impacted by factors such as exercise intensity or duration. Searches of electronic databases and reference lists from relevant studies resulted in 73 studies meeting inclusion criteria. Studies were grouped by executive and non-executive cognitive domains, intensity and duration of exercise bouts. Within the executive domain, we found that effects on working memory and cognitive flexibility remain mixed, effects on inhibition are clearer. Moderate intensity exercise improves response time, vigorous intensity impairs accuracy. Moderate to vigorous intensity improves response time across non-executive domains of attention, motor speed and information processing, with no significant effects on accuracy. Memory processes are consistently improved during exercise. Effects of exercise duration on response time and accuracy are nuanced and vary by cognitive domain. Studies typically explore durations of 45 min or less, extended exercise durations remain largely unexplored. We highlight factors to consider when assessing exercise-cognition relationships, as well as current gaps and future directions for work in this field.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anisa Morava ◽  
Matthew James Fagan ◽  
Harry Prapavessis

AbstractStudies show that a single bout of exercise confers cognitive benefits. However, many individuals use psychoactive substances such as caffeine to enhance cognitive performance. The effects of acute exercise in comparison to caffeine on cognition remain unknown. Furthermore, caffeine use is associated with withdrawal symptoms upon cessation. Whether acute exercise can reduce withdrawal symptoms also remains unknown. The objectives of this study were to compare the effects of acute moderate intensity aerobic exercise to caffeine on working memory (WM) and caffeine withdrawal symptoms (CWS). In Phase I, non-caffeine (n = 29) and caffeine consumers (n = 30) completed a WM assessment, followed by acute exercise and caffeine. In Phase II, caffeine consumers (n = 25) from Phase I underwent the WM assessment and reported CWS following a 12-hour deprivation period. Acute moderate intensity aerobic exercise and caffeine (1.2 mg/kg) significantly improved WM accuracy and reduced CWS comparably. WM performance was not reduced following caffeine deprivation.


2019 ◽  
Vol 25 (04) ◽  
pp. 413-425 ◽  
Author(s):  
Heather M. Conklin ◽  
Kirsten K. Ness ◽  
Jason M. Ashford ◽  
Matthew A. Scoggins ◽  
Robert J. Ogg ◽  
...  

AbstractObjectives: Craniopharyngioma survivors experience cognitive deficits that negatively impact quality of life. Aerobic fitness is associated with cognitive benefits in typically developing children and physical exercise promotes recovery following brain injury. Accordingly, we investigated cognitive and neural correlates of aerobic fitness in a sample of craniopharyngioma patients. Methods: Patients treated for craniopharyngioma [N=104, 10.0±4.6 years, 48% male] participated in fitness, cognitive and fMRI (n=51) assessments following surgery but before proton radiation therapy. Results: Patients demonstrated impaired aerobic fitness [peak oxygen uptake (PKVO2)=23.9±7.1, 41% impaired (i.e., 1.5 SD<normative mean)], motor proficiency [Bruininks-Oseretsky (BOT2)=38.6±9.0, 28% impaired], and executive functions (e.g., WISC-IV Working Memory Index (WMI)=96.0±15.3, 11% impaired). PKVO2 correlated with better executive functions (e.g., WISC-IV WMI r=.27, p=.02) and academic performance (WJ-III Calculation r=.24, p=.04). BOT2 correlated with better attention (e.g., CPT-II omissions r=.26, p=.04) and executive functions (e.g., WISC-IV WMI r=.32, p=.01). Areas of robust neural activation during an n-back task included superior parietal lobule, dorsolateral prefrontal cortex, and middle and superior frontal gyri (p<.05, corrected). Higher network activation was associated with better working memory task performance and better BOT2 (p<.001). Conclusions: Before adjuvant therapy, children with craniopharyngioma demonstrate significantly reduced aerobic fitness, motor proficiency, and working memory. Better aerobic fitness and motor proficiency are associated with better attention and executive functions, as well as greater activation of a well-established working memory network. These findings may help explain differential risk/resiliency with respect to acute cognitive changes that may portend cognitive late effects. (JINS, 2019, 25, 413–425)


2017 ◽  
Vol 41 (S1) ◽  
pp. S435-S435
Author(s):  
A. Di Santantonio ◽  
M. Manfredini ◽  
N. Varucciu ◽  
M. Fabbri ◽  
M.C. Cutrone ◽  
...  

IntroductionThe term executive functions (EFs) includes a set of cognitive processes such as planning, working memory, attention, problem solving, inhibition, mental flexibility, multi-tasking, and initiation and monitoring of actions. EFs are the higher order control processes to guide behaviour.Some studies on the relationship between EFs and autism spectrum disorder (ASD) showed deficit in the cognitive flexibility and speed processing, particularly with Asperger syndrome. Recently, Merchán-Naranjo et al. [1] supported that children's and adolescents with autism without intellectual disability are insufficient in at least 5 domains: attention, working memory, cognitive flexibility, inhibitory control and problem-solving.AimsOur work is aimed at verifying if the presence of a dysexecutive syndrome significantly impacts on the adaptive functioning of people with high functioning autism.MethodsA group of young adults with ASD were administered traditional neuropsychological assessment, specific assessment, focusing on the planning strategies for solving problems (Test Tower of London), abstraction and categorization (Wisconsin Card Sorting Test), and the Dysexecutive Questionnaires.ResultsThe results showed the presence of a specific deficit in the executive functioning in an average cognitive functioning.ConclusionsIntegrate the standard cognitive screening with a specific EFs assessment resulted to be very useful for the clinician to realize neuropsychological and psychotherapeutic individualized treatment.Disclosure of interestThe authors have not supplied their declaration of competing interest.


2020 ◽  
Author(s):  
Linsah Coulanges ◽  
Roberto A. Abreu-Mendoza ◽  
Sashank Varma ◽  
Melina Uncapher ◽  
Adam Gazzaley ◽  
...  

The relationship between executive functions (EF) and academic achievement is well-established, but leveraging this insight to improve educational outcomes remains elusive. Here, we propose a framework for relating the role of specific EF on specific precursor skills that support later academic learning. Specifically, we hypothesize that executive functions contribute to general math skills both directly – supporting the online execution of problem solving strategies – and indirectly – supporting the acquisition of precursor mathematical content. We test this hypothesis by examining the contribution of inhibitory control on processing rational numbers pairs which conflict with individual’s prior whole number knowledge and on general math knowledge. In 97 college students (79 female, age = 20.63 years), we collected three measures of EF: working memory (backwards spatial span), inhibition (color-word Stroop) and cognitive flexibility (task switching), and timed and untimed standardized measures of math achievement. Our target precursor skill was a decimals comparison task where correct responses were inconsistent with prior whole number knowledge (e.g. 0.27 vs. 0.9). Participants performed worse on these trials relative to the consistent decimals pairs (e.g. 0.2 vs. 0.87). Individual differences on incongruent Stroop trials predicted performance on inconsistent decimal comparisons, which in turn predicted performance on both timed and untimed measures of math achievement. With respect to relating inhibitory control to math achievement, incongruent Stroop performance was an independent predictor of untimed calculation skills after accounting for age, working memory and cognitive flexibility. Finally, we found that inconsistent decimals performance partially mediated the relationship between inhibition and untimed math achievement, consistent with the hypothesis that mathematical precursor skills can explain the relationships between executive functions and academic outcomes, making them promising targets for intervention.


2019 ◽  
Vol 8 (7) ◽  
pp. 940 ◽  
Author(s):  
Park ◽  
Park ◽  
Na ◽  
Hiroyuki ◽  
Kim ◽  
...  

This study aimed to investigate the association between a dual-task intervention program and cognitive and physical functions. In a randomized controlled trial, we enrolled 49 individuals with MCI. The MCI diagnosis was based on medical evaluations through a clinical interview conducted by a dementia specialist. Cognitive assessments were performed by neuropsychologists according to standardized methods, including the MMSE and modified Alzheimer’s disease Assessment Scale-Cognitive Subscale (ADAS-Cog), both at baseline and at 3 months follow-up. The program comprised physical activity and behavior modification, aerobic exercise, and a cognitive and exercise combined intervention program. Analysis of the subjects for group-time interactions revealed that the exercise group exhibited a significantly improved ADAS-Cog, working memory, and executive function. Total physical activity levels were associated with improvements in working memory function and the modified ADAS-Cog score, and the associations were stronger for daily moderate intensity activity than for daily step count. The 24-week combined intervention improved cognitive function and physical function in patients with MCI relative to controls. Encouraging participants to perform an additional 10 min of moderate physical activity under supervision, during ongoing intervention, may be more beneficial to prevent cognitive decline and improve exercise adherence.


2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii17-ii18
Author(s):  
M J F Landers ◽  
M M Sitskoorn ◽  
G J M Rutten ◽  
E Mandonnet ◽  
W De Baene

Abstract BACKGROUND Over the past years, the functional subcortical architecture of the brain has been increasingly acknowledged in neurosurgical planning. A method to study anatomo-functional correlations is direct electrical stimulation (DES). DES is widely used by neurosurgeons and considered as a reliable tool to minimize the occurrence of permanent postoperative motor, language and visual deficits. In recent years, DES has also been used for mapping of other cognitive functions, such as executive functions. MATERIAL AND METHODS We systematically summarized the evidence so far from DES studies on subcortical pathways that are involved in the following three executive functions: (1) inhibitory control, (2) working memory and (3) cognitive flexibility. RESULTS We only found twelve articles that reported on intraoperative electrical stimulation of white matter pathways to map executive functions and explicitly clarified which subcortical tract was stimulated. The results indicate that the second branch of the right superior longitudinal fasciculus (SLF-II) is involved in inhibitory control, the first branch of the right superior longitudinal fasciculus (SLF-I) and the third branch of the left superior longitudinal fasciculus (SLF-III) are involved in working memory and the cingulum is involved in cognitive flexibility. CONCLUSION We were unable to draw any specific conclusions, nor unequivocally established the pathways involved in executive functions due to heterogenous study characteristics, methods and tasks, and the limited number of studies that assessed these relationships. Clearly, neurosurgical groups are exploring novel methods to assess cognition during awake neurosurgery, but are far from consensus on indications and protocols, which complicated the comparison and summarization of findings. We will discuss possible approaches for future research to obtain converging and more definite evidence for the involvement of subcortical pathways in specific executive functions.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2240
Author(s):  
Guilherme Maginador ◽  
Manoel E. Lixandrão ◽  
Henrique I. Bortolozo ◽  
Felipe C. Vechin ◽  
Luís O. Sarian ◽  
...  

While performing aerobic exercise during chemotherapy has been proven feasible and safe, the efficacy of aerobic training on cardiorespiratory fitness (CRF) in women with breast cancer undergoing chemotherapy has not yet been systematically assessed. Therefore, the objective of this work was to determine (a) the efficacy of aerobic training to improve CRF; (b) the role of aerobic training intensity (moderate or vigorous) on CRF response; (c) the effect of the aerobic training mode (continuous or interval) on changes in CRF in women with breast cancer (BC) receiving chemotherapy. A systematic review and meta-analysis were conducted as per PRISMA guidelines, and randomized controlled trials comparing usual care (UC) and aerobic training in women with BC undergoing chemotherapy were eligible. The results suggest that increases in CRF are favored by (a) aerobic training when compared to usual care; (b) vigorous-intensity aerobic exercise (64–90% of maximal oxygen uptake, VO2max) when compared to moderate-intensity aerobic exercise (46–63% of VO2max); and (c) both continuous and interval aerobic training are effective at increasing the VO2max. Aerobic training improves CRF in women with BC undergoing chemotherapy. Notably, training intensity significantly impacts the VO2max response. Where appropriate, vigorous intensity aerobic training should be considered for women with BC receiving chemotherapy.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S836-S836
Author(s):  
Pearl N Cummins ◽  
James Kent ◽  
Timothy Weng ◽  
Vincent Magnottta ◽  
Gary Pierce ◽  
...  

Abstract Previous researchers have reported that aerobic exercise improves cognition in older adults; however, few researchers have examined the role of arousal on improvements in cognition after exercise. The purpose of this study was to understand how changes in arousal acutely affect changes in cognitive performance after a single session of light compared to moderate intensity aerobic exercise. Cognitively normal older adults (N = 34) were enrolled in a randomized controlled trial where they were asked to complete the N-back task with faces, a cognitive task used to test working memory, in an fMRI scanner. On separate days, the task was completed before and 15 to 20 minutes after light and moderate intensity exercise. An intervention was also completed, but our question focuses on the acute effects of exercise rather than training. Arousal was measured before and after exercise through a questionnaire and a direct measure of physiological activation of the sympathetic nervous system with galvanic skin response (GSR). On average, resting GSRs decreased from pre- to post-exercise scan; however, the change was not statistically significant. The decrease in arousal after light exercise indicated that older adults had decreased sympathetic activity after both light and moderate intensity exercise. By contrast, N-back task performance improved most after moderate compared to light intensity exercise. Together, evidence that sympathetic activity tended to decrease generally for both intensities, whereas cognitive improvements were more specific, suggests that changes in arousal at rest were not a critical factor connecting exercise and improved working memory in this study.


Author(s):  
Sarah E. Miller ◽  
Mark D. DeBoer ◽  
Rebecca J. Scharf

Abstract Objective Executive functions such as working memory and cognitive flexibility are key to lifelong learning. Our hypothesis was that children born low birthweight (LBW), defined as weight < 2,500 g, would have lower cognitive outcomes than those born normal weight, and children with poor executive functioning would be at risk for poor academic outcomes. Study Design We evaluated data from 12,656 children followed prospectively in the Early Childhood Longitudinal Study, Kindergarten Class 2010–2011, assessing outcomes from kindergarten, first grade, and second grade. Multivariable linear and logistic regressions were run evaluating the relationship between birthweight and cognitive outcomes, and the odds of infants with poor executive functioning having poor academic outcomes. Results Compared with children with normal birthweight, those born LBW had lower mean z-scores for academic and directly assessed executive functions from kindergarten through second grade. LBW children were at an increased risk of scoring in the bottom 20% of children at all time points: second-grade reading odds ratio (OR) = 1.60 (95% confidence interval [CI:] 1.23–2.09), math OR = 1.49 (95% CI: 1.21–1.84), science OR = 1.41 (95% CI: 1.11–1.81), cognitive flexibility OR = 1.61 (95% CI: 1.27–2.02), and working memory OR = 1.40 (95% CI: 1.10–1.77). Conclusion LBW infants remain at risk of poor cognitive outcomes in second grade. Early difficulties with executive functioning can increase the risk of a child's academic performance years later.


2011 ◽  
Vol 33 (6) ◽  
pp. 847-865 ◽  
Author(s):  
Yu-Kai Chang ◽  
Chia-Liang Tsai ◽  
Tsung-Min Hung ◽  
Edmund Cheung So ◽  
Feng-Tzu Chen ◽  
...  

The purpose of this study is to extend the literature by examining the effects of an acute bout of moderate to vigorous intensity aerobic exercise on the executive functions of planning and problem solving assessed using a Tower of London Task (TOL Task). Forty-two participants were randomly assigned into either exercise or control group, and performed the TOL Task, before and immediately following exercise or a control treatment. The exercise group performed 30 min of exercise on a stationary cycle at moderate to vigorous intensity while the control group read for the same length of time. Results indicated that the exercise group achieved improvements in TOL Task scores reflecting the quality of planning and problem solving, but not in those reflecting rule adherence and performance speed. These findings indicate that an acute bout of aerobic exercise has facilitative effects on the executive functions of planning and problem solving.


Sign in / Sign up

Export Citation Format

Share Document