scholarly journals Anger Experience and Anger Expression Through Drawing in Schizophrenia: An fNIRS Study

2021 ◽  
Vol 12 ◽  
Author(s):  
Wenhua Yan ◽  
Weidong Ji ◽  
Chen Su ◽  
Yunhan Yu ◽  
Xiaoman Yu ◽  
...  

Differences in emotion experience and emotion expression between patients with schizophrenia and the healthy population have long been the focus of research and clinical attention. However, few empirical studies have addressed this topic using art-making as a tool of emotion expression. This study explores the differences in brain mechanism during the process of expressing anger between patients with schizophrenia and healthy participants using pictographic psychological techniques. We used functional near-infrared spectroscopy to fully detect changes in frontal cortex activity among participants in two groups—schizophrenia and healthy—during the process of experiencing and expressing anger. The results showed that there were no differences in the experience of anger between the two groups. In the process of anger expression, the dorsolateral prefrontal cortex, frontal pole, and other regions showed significant negative activation among patients with schizophrenia, which was significantly different from that of the healthy group. There were significant differences between patients with schizophrenia and the healthy group in the drawing features, drawing contents, and the ability to describe the contents of their drawings. Moreover, the effect size of the latter was greater than those of the former two. In terms of emotion expression, the drawing data and brain activation data were significantly correlated in each group; however, the correlation patterns differed between groups.

Gesture ◽  
2020 ◽  
Vol 19 (2-3) ◽  
pp. 196-222
Author(s):  
Michela Balconi ◽  
Angela Bartolo ◽  
Giulia Fronda

Abstract The interest of neuroscience has been aimed at the investigation of the neural bases underlying gestural communication. This research explored the intra- and inter-brain connectivity between encoder and decoder. Specifically, adopting a “hyperscanning paradigm” with the functional Near-infrared Spectroscopy (fNIRS) cerebral connectivity in oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin levels were revealed during the reproduction of affective, social, and informative gestures of different valence. Results showed an increase of intra- and inter-brain connectivity in dorsolateral prefrontal cortex for affective gestures, in superior frontal gyrus for social gestures and in frontal eyes field for informative gestures. Moreover, encoder showed a higher intra-brain connectivity in posterior parietal areas more than decoder. Finally, an increasing of inter-brain connectivity more than intra-brain (ConIndex) was observed in left regions for positive gestures. The present research has explored how the individuals neural tuning mechanisms turn out to be strongly influenced by the nature of specific gestures.


2021 ◽  
Vol 3 ◽  
Author(s):  
Zilu Liang

People with mental stress often experience disturbed sleep, suggesting stress-related abnormalities in brain activity during sleep. However, no study has looked at the physiological oscillations in brain hemodynamics during sleep in relation to stress. In this pilot study, we aimed to explore the relationships between bedtime stress and the hemodynamics in the prefrontal cortex during the first sleep cycle. We tracked the stress biomarkers, salivary cortisol, and secretory immunoglobulin A (sIgA) on a daily basis and utilized the days of lower levels of measured stress as natural controls to the days of higher levels of measured stress. Cortical hemodynamics was measured using a cutting-edge wearable functional near-infrared spectroscopy (fNIRS) system. Time-domain, frequency-domain features as well as nonlinear features were derived from the cleaned hemodynamic signals. We proposed an original ensemble algorithm to generate an average importance score for each feature based on the assessment of six statistical and machine learning techniques. With all channels counted in, the top five most referred feature types are Hurst exponent, mean, the ratio of the major/minor axis standard deviation of the Poincaré plot of the signal, statistical complexity, and crest factor. The left rostral prefrontal cortex (RLPFC) was the most relevant sub-region. Significantly strong correlations were found between the hemodynamic features derived at this sub-region and all three stress indicators. The dorsolateral prefrontal cortex (DLPFC) is also a relevant cortical area. The areas of mid-DLPFC and caudal-DLPFC both demonstrated significant and moderate association to all three stress indicators. No relevance was found in the ventrolateral prefrontal cortex. The preliminary results shed light on the possible role of the RLPCF, especially the left RLPCF, in processing stress during sleep. In addition, our findings echoed the previous stress studies conducted during wake time and provides supplementary evidence on the relevance of the dorsolateral prefrontal cortex in stress responses during sleep. This pilot study serves as a proof-of-concept for a new research paradigm to stress research and identified exciting opportunities for future studies.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Asato Morita ◽  
Yasunori Morishima ◽  
David W. Rackham

Accurate time estimation is crucial for many human activities and necessitates the use of working memory, in which the dorsolateral prefrontal cortex (DLPFC) plays a critical role. We tested the hypothesis that the DLPFC is activated in participants attempting time estimations that require working memory. Specifically, we used functional near-infrared spectroscopy (fNIRS) to investigate prefrontal cortical activity in the brains of individuals performing a prospective time production task. We measured cerebral hemodynamic responses in 26 healthy right-handed university students while they marked the passage of specified time intervals (3, 6, 9, 12, or 15 s) or performed a button-pressing (control) task. The behavioral results indicated that participants’ time estimations were accurate with minimal variability. The fNIRS data showed that activity was significantly higher in the right DLPFC during the time estimation task compared to the control task. Theoretical considerations and the results of this study suggest that DLPFC activation resulting from time estimation indicates that the working memory system is in use.


2020 ◽  
Author(s):  
Hashini Wanniarachchi ◽  
Yan Lang ◽  
Xinlong Wang ◽  
Sridhar Nerur ◽  
Kay-Yut Chen ◽  
...  

AbstractNeuroeconomics with neuroimaging is a novel approach involving economics and neuroscience. The newsvendor problem (NP) is a prevalent economics concept that may be used to map brain activations during NP-evoked risky decision making. In this study, we hypothesized that key brain regions responsible for NP are dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC). Twenty-seven human subjects participated in the study using 40 NP trials; the participants were randomly assigned to a group with a low-profit margin (LM) or high-profit margin (HM) treatment. Cerebral hemodynamic responses were recorded simultaneously during the NP experiments from all participants with a 77-channel functional Near-infrared Spectroscopy (fNIRS) system. After data preprocessing, general linear model was applied to generate brain activation maps, followed by statistical t-tests. The results showed that: (a) DLPFC and OFC were significantly evoked by NP versus baseline regardless of treatment types; (b) DLPFC and OFC were activated by HM versus baseline; and (c) DLPFC was activated during LM versus baseline. Furthermore, significant deactivation in right DLPFC was shown due to LM with respect to HM. This study affirms that DLPFC and OFC are two key cortical regions when solving NP. In particular, right DLPFC was found to be more deactivated under challenging risk decision making.


2021 ◽  
Vol 4 (1) ◽  
pp. p8
Author(s):  
Michael Oler ◽  
Anthony Johnson ◽  
Anna McCulloh ◽  
Munqith Dagher ◽  
Anita Day ◽  
...  

Sectarian violence continues in Iraq affecting regional and world security. Neuroscience techniques are used to assess the mentalizing process and counter-arguing in response to videos designed to prevent extremist radicalization. Measurement of neural activity in brain Regions of Interest (ROI) assists identification of messages which can promote favorable behavior. Activation of the Medial Prefrontal Cortex (MPFC) is associated with message adoption and behavior change. Public Service Announcements (PSAs) have not been effective in reducing violence in Iraq. This study demonstrates that the four PSAs investigated in this study do not activate the MPFC. The RLPFC is a brain ROI associated with counter-arguing and message resistance. This study demonstrates that reduction in activity in the Right Lateral Prefrontal Cortex (RLPFC) is associated with decreased sectarianism. Engagement was measured and is associated with activity in the frontal pole regions.We introduce Functional Near-infrared Spectroscopy (fNIRS) to measure the neural activity of highly sectarian Iraqis in response to these anti-sectarian messages. Neural activity was measured while viewing three PSAs and a fourth unpublished video. All four videos are intended to reduce sectarianism. A novel sectarianism scale is introduced to measure sectarian beliefs before and after the messages. This sectarian scale has high internal consistency as measured by Cronbach’s alpha. Measured activation of brain ROIs are correlated with changes in the sectarian scale. Twelve Sunni and twelve Shi’a Iraqis participated in the study. Subjects were shown the four videos in randomized order, while equipped with a fNIRS neural imaging device. All four videos produced significant engagement. None of the videos reduced sectarianism nor caused brain activation of adoption. This is consistent with the widely held Iraqi public perception that the PSAs are ineffective. Only one video, which was un-published, caused reduced sectarian beliefs. This un-published fourth video was associated with decreased counter-arguing. Counter-arguing is associated with message resistance.


2021 ◽  
Vol 15 ◽  
Author(s):  
Noriyuki Narita ◽  
Kazunobu Kamiya ◽  
Sunao Iwaki ◽  
Tomohiro Ishii ◽  
Hiroshi Endo ◽  
...  

BackgroundThe differences in the brain activities of the insular and the visual association cortices have been reported between oral and manual stereognosis. However, these results were not conclusive because of the inherent differences in the task performance-related motor sequence conditions. We hypothesized that the involvement of the prefrontal cortex may be different between finger and oral shape discrimination. This study was conducted to clarify temporal changes in prefrontal activities occurring in the processes of oral and finger tactual shape discrimination using prefrontal functional near-infrared spectroscopy (fNIRS).MethodsSix healthy right-handed males [aged 30.8 ± 8.2 years (mean ± SD)] were enrolled. Measurements of prefrontal activities were performed using a 22-channel fNIRS device (ETG-100, Hitachi Medical Co., Chiba, Japan) during experimental blocks that included resting state (REST), nonsense shape discrimination (SHAM), and shape discrimination (SHAPE).ResultsNo significant difference was presented with regard to the number of correct answers during trials between oral and finger SHAPE discrimination. Additionally, a statistical difference for the prefrontal fNIRS activity between oral and finger shape discrimination was noted in CH 1. Finger SHAPE, as compared with SHAM, presented a temporally shifting onset and burst in the prefrontal activities from the frontopolar area (FPA) to the orbitofrontal cortex (OFC). In contrast, oral SHAPE as compared with SHAM was shown to be temporally overlapped in the onset and burst of the prefrontal activities in the dorsolateral prefrontal cortex (DLPFC)/FPA/OFC.ConclusionThe prefrontal activities temporally shifting from the FPA to the OFC during SHAPE as compared with SHAM may suggest the segregated serial prefrontal processing from the manipulation of a target image to the decision making during the process of finger shape discrimination. In contrast, the temporally overlapped prefrontal activities of the DLPFC/FPA/OFC in the oral SHAPE block may suggest the parallel procession of the repetitive involvement of generation, manipulation, and decision making in order to form a reliable representation of target objects.


2021 ◽  
Vol 15 ◽  
Author(s):  
Linlin Yu ◽  
Quanshan Long ◽  
Yancheng Tang ◽  
Shouhang Yin ◽  
Zijun Chen ◽  
...  

We investigated if emotion regulation can be improved through self-regulation training on non-emotional brain regions, as well as how to change the brain networks implicated in this process. During the training period, the participants were instructed to up-regulate their right dorsolateral prefrontal cortex (rDLPFC) activity according to real-time functional near-infrared spectroscopy (fNIRS) neurofeedback signals, and there was no emotional element. The results showed that the training significantly increased emotion regulation, resting-state functional connectivity (rsFC) within the emotion regulation network (ERN) and frontoparietal network (FPN), and rsFC between the ERN and amygdala; however, training did not influence the rsFC between the FPN and the amygdala. However, self-regulation training on rDLPFC significantly improved emotion regulation and generally increased the rsFCs within the networks; the rsFC between the ERN and amygdala was also selectively increased. The present study also described a safe approach that may improve emotion regulation through self-regulation training on non-emotional brain regions.


2020 ◽  
Author(s):  
Michelle Jin-Yee Neoh ◽  
Atiqah Azhari ◽  
Claudio Mulatti ◽  
Marc H. Bornstein ◽  
Gianluca Esposito

AbstractThe prevalence of criticism in everyday social situations, and its empirically demonstrated association with psychopathology, highlight the importance of understanding neural mechanisms underlying the perception and response of individuals to criticism. However, neuroimaging studies to date have been limited largely to maternal criticism. The present study aims to investigate neural responses to criticism originating from three different relationship types: romantic partners, friends, and parents. Perceived criticism ratings for these relationships from 49 participants were collected. Functional near-infrared spectroscopy was used to measure changes in oxygenated haemoglobin levels in the prefrontal cortex when participants read vignettes describing three different scenarios of criticism. Participants were randomly assigned to 3 groups where the given description of the relationship of the protagonist to the source of criticism for each vignette was randomised. A significant interaction between relationship type and perceived criticism ratings for mothers was found in the dorsolateral prefrontal cortex. Compared to low perceived criticism, high perceived criticism individuals showed increased activation reading vignettes describing criticism from romantic partners and parents but decreased activation for those from friends. Findings contribute to understanding neural responses to criticism as observed from a third-party perspective. Future studies can look into differentiating neural responses of personalised experiences of criticism and third-party observations.


2020 ◽  
Vol 34 (12) ◽  
pp. 1088-1098
Author(s):  
Paulo H. S. Pelicioni ◽  
Stephen R. Lord ◽  
Yoshiro Okubo ◽  
Daina L. Sturnieks ◽  
Jasmine C. Menant

Background People with Parkinson’s disease (PD) have difficulties generating quick and accurate steps in anticipation of and/or in response to environmental hazards. However, neural mechanisms underlying performance in cognitively demanding stepping tasks are unclear. Objective This study compared activation patterns in cognitive and motor cortical regions using functional near-infrared spectroscopy (fNIRS) between people with PD and age-matched healthy older adults (HOA) during stepping tasks. Methods Fifty-two people with PD and 95 HOA performed a simple choice stepping reaction time test (CSRT) and 2 cognitively demanding stepping tests (inhibitory CSRT [iCSRT] and Stroop stepping test [SST]) on a computerized step mat. Cortical activation in the dorsolateral prefrontal cortex (DLPFC), Broca’s area, supplementary motor area (SMA), and premotor cortex (PMC) were recorded using fNIRS. Stepping performance and cortical activity were contrasted between groups and between the CSRT and the iCSRT and SST. Results The PD group performed worse than the HOA in all 3 stepping tests. A consistent pattern of interactions indicated differential hemodynamic responses between the groups. Compared with the CSRT, the PD group exhibited reduced DLPFC activity in the iCSRT and reduced SMA and PMC activity in the SST. The HOA exhibited increased DLPFC, SMA, and PMC activity when performing the SST in comparison with the CSRT task. Conclusions In contrast to the HOA, the PD group demonstrated reduced cortical activity in the DLPFC, SMA, and PMC during the more complex stepping tasks requiring inhibitory control. This may reflect subcortical and/or multiple pathway damage with subsequent deficient use of cognitive and motor resources.


Sign in / Sign up

Export Citation Format

Share Document