scholarly journals A Novel Strategy to Predict Carcinogenicity of Antiparasitics Based on a Combination of DNA Lesions and Bacterial Mutagenicity Tests

2017 ◽  
Vol 5 ◽  
Author(s):  
Qianying Liu ◽  
Zhixin Lei ◽  
Feng Zhu ◽  
Awais Ihsan ◽  
Xu Wang ◽  
...  
2020 ◽  
Vol 21 (16) ◽  
pp. 5766 ◽  
Author(s):  
David Murray ◽  
Razmik Mirzayans

Chemotherapy is intended to induce cancer cell death through apoptosis and other avenues. Unfortunately, as discussed in this article, moderate doses of genotoxic drugs such as cisplatin typical of those achieved in the clinic often invoke a cytostatic/dormancy rather than cytotoxic/apoptosis response in solid tumour-derived cell lines. This is commonly manifested by an extended apoptotic threshold, with extensive apoptosis only being seen after very high/supralethal doses of such agents. The dormancy response can be associated with senescence-like features, polyploidy and/or multinucleation, depending in part on the p53 status of the cells. In most solid tumour-derived cells, dormancy represents a long-term survival mechanism, ultimately contributing to disease recurrence. This review highlights the nonlinearity of key aspects of the molecular and cellular responses to bulky DNA lesions in human cells treated with chemotherapeutic drugs (e.g., cisplatin) or ultraviolet light-C (a widely used tool for unraveling details of the DNA damage-response) as a function of the level of genotoxic stress. Such data highlight the growing realization that targeting dormant cancer cells, which frequently emerge following conventional anticancer treatments, may represent a novel strategy to prevent or, at least, significantly suppress cancer recurrence.


2019 ◽  
Vol 3 (1) ◽  
pp. 97-105
Author(s):  
Mary Zuccato ◽  
Dustin Shilling ◽  
David C. Fajgenbaum

Abstract There are ∼7000 rare diseases affecting 30 000 000 individuals in the U.S.A. 95% of these rare diseases do not have a single Food and Drug Administration-approved therapy. Relatively, limited progress has been made to develop new or repurpose existing therapies for these disorders, in part because traditional funding models are not as effective when applied to rare diseases. Due to the suboptimal research infrastructure and treatment options for Castleman disease, the Castleman Disease Collaborative Network (CDCN), founded in 2012, spearheaded a novel strategy for advancing biomedical research, the ‘Collaborative Network Approach’. At its heart, the Collaborative Network Approach leverages and integrates the entire community of stakeholders — patients, physicians and researchers — to identify and prioritize high-impact research questions. It then recruits the most qualified researchers to conduct these studies. In parallel, patients are empowered to fight back by supporting research through fundraising and providing their biospecimens and clinical data. This approach democratizes research, allowing the entire community to identify the most clinically relevant and pressing questions; any idea can be translated into a study rather than limiting research to the ideas proposed by researchers in grant applications. Preliminary results from the CDCN and other organizations that have followed its Collaborative Network Approach suggest that this model is generalizable across rare diseases.


Author(s):  
Taddese Mekonnen Ambay ◽  
Philipp Schick ◽  
Michael Grimm ◽  
Maximilian Sager ◽  
Felix Schneider ◽  
...  

2020 ◽  
Author(s):  
Ana Beloqui ◽  
Francesco Suriano ◽  
Matthias Hul ◽  
Yining Xu ◽  
Véronique Préat ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
pp. 58-76 ◽  
Author(s):  
Bohan Rong ◽  
Qiong Wu ◽  
Chao Sun

Melatonin is a well-known molecule for its involvement in circadian rhythm regulation and its contribution to protection against oxidative stress in organisms including unicellular alga, animals and plants. Currently, the bio-regulatory effects of melatonin on the physiology of various peripheral tissues have drawn a great attention of scientists. Although melatonin was previously defined as a neurohormone secreted from pineal gland, recently it has been identified that virtually, every cell has the capacity to synthesize melatonin and the locally generated melatonin has multiple pathophysiological functions, including regulations of obesity and metabolic syndromes. Herein, we focus on the effects of melatonin on fat deposition in various peripheral organs/tissues. The two important regulatory mechanisms related to the topic, i.e., the improvements of circadian rhythms and antioxidative capacity will be thoroughly discussed since they are linked to several biomarkers involved in obesity and energy imbalance, including metabolism and immunity. Furthermore, several other functions of melatonin which may serve to prevent or promote obesity and energy dysmetabolism-induced pathological states are also addressed. The organs of special interest include liver, pancreas, skeletal muscle, adipose tissue and the gut microbiota.


2019 ◽  
Vol 2 (02) ◽  
pp. 80-89
Author(s):  
Blanca De Unamuno Bustos ◽  
Natalia Chaparr´´o Aguilera ◽  
Inmaculada Azorín García ◽  
Anaid Calle Andrino ◽  
Margarita Llavador Ros ◽  
...  

Actinic keratosis (AKs) are part of the cancerization field, a region adjacent to AKs containing subclinical and histologically abnormal epidermal tissue due to Ultraviolet (UV)-induced DNA damage. The photoproducts as consequence of DNA damage induced by UV are mainly cyclobutane pyrimidine dimers (CPDs). Fernblock® demonstrated in previous studies significant reduction of the number of CPDs induced by UV radiation. Photolyases are a specific group of enzymes that remove the major UV-induced DNA lesions by a mechanism called photo-reactivation. A monocentric, prospective, controlled, and double blind interventional study was performed to evaluate the effect of a new medical device (NMD) containing a DNA-repair enzyme complex (photolyases, endonucleases and glycosilases), a combination of UV-filters, and Fernblock® in the treatment of the cancerization field in 30 AK patients after photodynamic therapy. Patients were randomized into two groups: patients receiving a standard sunscreen (SS) andpatients receiving the NMD. Clinical, dermoscopic, reflectance confocal microscopy (RCM) and histological evaluations were performed. An increase of AKs was noted in all groups after three months of PDT without significant differences between them (p=0.476). A significant increase in the number of AKs was observed in SS group after six (p=0.026) and twelve months of PDT (p=0.038); however, this increase did not reach statistical significance in the NMD group. Regarding RCM evaluation, honeycomb pattern assessment after twelve months of PDT showed significant differences in the extension and grade of the atypia in the NMD group compared to SS group (p=0.030 and p=0.026, respectively). Concerning histopathological evaluation, keratinocyte atypia grade improved from baseline to six months after PDT in all the groups, with no statistically significant differences between the groups. Twelve months after PDT, p53 expression was significantly lower in the NMD group compared to SS group (p=0.028). The product was well-tolerated, with no serious adverse events reported. Our results provide evidence of the utility of this NMD in the improvement of the cancerization field and in the prevention of the development of new AKs.  


2019 ◽  
Author(s):  
Jiajun Wang ◽  
Meng-Yin Li ◽  
Jie Yang ◽  
Ya-Qian Wang ◽  
Xue-Yuan Wu ◽  
...  

DNA lesion such as metholcytosine(<sup>m</sup>C), 8-OXO-guanine(<sup>O</sup>G), inosine(I) <i>etc</i> could cause the genetic diseases. Identification of the varieties of lesion bases are usually beyond the capability of conventional DNA sequencing which is mainly designed to discriminate four bases only. Therefore, lesion detection remain challenge due to the massive varieties and less distinguishable readouts for minor structural variations. Moreover, standard amplification and labelling hardly works in DNA lesions detection. Herein, we designed a single molecule interface from the mutant K238Q Aerolysin, whose confined sensing region shows the high compatible to capture and then directly convert each base lesion into distinguishable current readouts. Compared with previous single molecule sensing interface, the resolution of the K238Q Aerolysin nanopore is enhanced by 2-order. The novel K238Q could direct discriminate at least 3 types (<sup>m</sup>C, <sup>O</sup>G, I) lesions without lableing and quantify modification sites under mixed hetero-composition condition of oligonucleotide. Such nanopore could be further applied to diagnose genetic diseases at high sensitivity.


Sign in / Sign up

Export Citation Format

Share Document