scholarly journals Comparison of Carbapenem-Resistant Klebsiella pneumoniae Strains Causing Intestinal Colonization and Extraintestinal Infections: Clinical, Virulence, and Molecular Epidemiological Characteristics

2021 ◽  
Vol 9 ◽  
Author(s):  
Wenli Liao ◽  
Na Huang ◽  
Ying Zhang ◽  
Yao Sun ◽  
Tao Chen ◽  
...  

Carbapenem-resistant Klebsiella pneumonia (CRKP) infections has become a concerning threat. However, knowledge regarding the characteristics of intestinal CRKP isolates is limited. This study aimed to investigate and compare the clinical, virulence and molecular epidemiological characteristics of intestinal colonization and extraintestinal infections CRKP strains. The clinical characteristics were investigated retrospectively. Polymerase chain reaction was used to investigate the capsular serotype, virulence genes and carbapenemase genes. Capsular polysaccharide quantification assay, serum resistance assay, biofilm formation assay, and infection model of Galleria mellonella larvae were performed to compare the virulence and pathogenicity. Besides, multilocus-sequence-typing (MLST) and pulsed-field-gel-electrophoresis (PFGE) were conducted to explore the homology of intestinal CRKP isolates. A total of 54 intestinal CRKP isolates were included. The main capsular serotypes were K14, K64, and K19. C-reactive protein and the proportion of ICU isolation of the infection group were significantly higher than that of the colonization group (P < 0.05). The carrier rates of various virulence genes of CRKP in the infection group were mostly higher than those in the colonization group, wherein the carrier rates of peg-344 and rmpA were significantly different (P < 0.05). There was no significant difference in capsular polysaccharides, antiserum ability, biofilm formation ability between the two group (P > 0.05), but the lethality of the infection group to Galleria mellonella was significantly higher than that of the colonization group (P < 0.05). The MLST categorized the 54 isolates into 13 different sequence types. PFGE revealed that homology among the 54 CRKP strains was <80%. This study suggested that the CRKP strains in the infection group had higher virulence than those in the colonization group. The development of CRKP isolates colonizing in the intestine should be addressed in future clinical surveillance.

2021 ◽  
Author(s):  
Zhiwen Cui ◽  
Lirui Wang ◽  
Wei Chang ◽  
Minghui Li ◽  
Yuexia Li ◽  
...  

Abstract Background:The infections due to carbapenem-resistant Klebsiella pneumonia (CR-KP) have become an important problem. The aim of the study is to evaluate the clinical and epidemiological characteristics of CR-KP. Results: The CR-KP infections overall mortality was 37.3%, and bloodstream infections mortality was 66.2%. Survival analysis revealed that there were statistically significant differences between bloodstream infection and pulmonary and drainage fluid infection. Hemopathy, age (>60 years), tumors, diabetes, septic shock, acute kidney injury and stroke were independent predictors associated with the 30-day mortality. Multivariate linear regression showed that survival time was negatively correlated with APACHE II score and SOFA score, while positively correlated with LYM. Chi-square test showed that antimicrobial regimen combined carbapenems, tigecycline with polymyxin B was superior the one combined carbapenems with polymyxin B. But there was not statistically significant difference between carbapenems plus tigecycline and carbapenems plus polymyxin B. Ceftazidime avibactam-based antimicrobial regimens also had no advantage over other therapeutic regimens. Conclusions: Our study confirmed there is a high mortality rate in CR-KP infections, especially in the bloodstream infections. The outcome is greatly influenced by the patients’ clinical conditions. Antimicrobial regimen combined carbapenems, tigecycline with polymyxin B might be a better choice.


2019 ◽  
Vol 75 (2) ◽  
pp. 327-336 ◽  
Author(s):  
Yawei Zhang ◽  
Longyang Jin ◽  
Pengwen Ouyang ◽  
Qi Wang ◽  
Ruobing Wang ◽  
...  

Abstract Objectives Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) have been increasingly reported in China. Here, a multicentre, longitudinal surveillance study on CR-hvKP is described. Methods We retrospectively investigated carbapenem-resistant K. pneumoniae (CRKP) in 56 centres across China during 2015–17 and screened the virulence genes (iucA, iroN, rmpA and rmpA2) for the presence of virulence plasmids. Hypermucoviscosity, serum killing and Galleria mellonella lethality experiments were conducted to identify CR-hvKP among strains with all four virulence genes. Capsule typing, fitness and plasmid features of CR-hvKP were also investigated. Results A total of 1052 CRKP were collected. Among these, 34.2% (360/1052) carried virulence genes and 72 of them had all four of the virulence genes tested. Fifty-five (76.4%) were considered to be CR-hvKP using the G. mellonella infection model, with KPC-2-producing K64-ST11 being the most common type (80%, 44/55). Prevalence of CR-hvKP differed greatly between regions, with the highest in Henan (25.4%, 17/67) and Shandong (25.8%, 25/97). A significant increase in CR-hvKP among KPC-2-producing ST11 strains was observed, from 2.1% (3/141) in 2015 to 7.0% (23/329) in 2017 (P=0.045). Alarmingly, compared with classic CRKP, no difference in growth was found among CR-hvKP (P=0.7028), suggesting a potential risk for dissemination. The hybrid virulence and resistance-encoding plasmid evolved from pLVPK and the resistance plasmid harbouring blaKPC-2, indicating evolution existed between the hypervirulence and hyper-resistance plasmid. Conclusions CR-hvKP were more frequently detected than previously assumed, especially among KPC-2-producing ST11. Dissemination of hypervirulence could be extremely rapid due to limited fitness cost. Also, the evolution of resistance genes into hypervirulence plasmids was identified, presenting significant challenges for public health and infection control.


Author(s):  
Wan Huang ◽  
Jisheng Zhang ◽  
Lingyi Zeng ◽  
Chengru Yang ◽  
Lining Yin ◽  
...  

BackgroundThis study aimed to determine the molecular characteristics of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates in a hospital in western Chongqing, southwestern China.MethodsA total of 127 unique CRKP isolates were collected from the Yongchuan Hospital of Chongqing Medical University, identified using a VITEK-2 compact system, and subjected to microbroth dilution to determine the minimal inhibitory concentration. Enterobacteriaceae intergenic repeat consensus polymerase chain reaction and multilocus sequence typing were used to analyze the homology among the isolates. Genetic information, including resistance and virulence genes, was assessed using polymerase chain reaction. The genomic features of the CRKP carrying gene blaKPC-2 were detected using whole-genome sequencing.ResultsST11 was the dominant sequence type in the homology comparison. The resistance rate to ceftazidime-avibactam in children was much higher than that in adults as was the detection rate of the resistance gene blaNDM (p < 0.0001). Virulence genes such as mrkD (97.6%), uge (96.9%), kpn (96.9%), and fim-H (84.3%) had high detection rates. IncF (57.5%) was the major replicon plasmid detected, and sequencing showed that the CRKP063 genome contained two plasmids. The plasmid carrying blaKPC-2, which mediates carbapenem resistance, was located on the 359,625 base pair plasmid IncFII, together with virulence factors, plasmid replication protein (rep B), stabilizing protein (par A), and type IV secretion system (T4SS) proteins that mediate plasmid conjugation transfer.ConclusionOur study aids in understanding the prevalence of CRKP in this hospital and the significant differences between children and adults, thus providing new ideas for clinical empirical use of antibiotics.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 953
Author(s):  
Erkay Özgör

The study aims to prove the possibility of colonization of N. apis and N. ceranae to the intestine of the greater wax moth, detect the differences of greater wax moth based on the presence of Nosema species and examine the effect of Nosema species on the phenoloxidase level of greater wax moth compared with honeybees. Each group was fed on the 1st day of the experiment with its appropriate diet containing 106 Nosema spores per insect. Each group was checked daily, and dead insects were counted. Furthermore, changes in the level of expression of the phenoloxidase-related gene after Nosema spp. treatment on the 6th, 9th and 12th days, which was detected by Q-PCR, and the mRNA level of phenoloxidase gene were measured in all experiment groups with the CFX Connect Real-Time PCR Detection System. This study shows that Apis mellifera L. has a 66.7% mortality rate in mixed Nosema infections, a 50% mortality rate in N. ceranae infection, a 40% mortality rate in N. apis infection, while there is no death in G. mellonella. A significant difference was found in the mixed Nosema infection group compared to the single Nosema infection groups by means of A. mellifera and G. mellonella (Duncan, p < 0.05). G. mellonella histopathology also shows that Nosema spores multiply in the epithelial cells of greater wax moth without causing any death. The increase in the mRNA level of Phenoloxidase gene in A. mellifera was detected (Kruskal–Wallis, p < 0.05), while the mRNA level of the Phenoloxidase gene did not change in G. mellonella (Kruskal–Wallis, p > 0.05). These findings prove that the Nosema species can colonize into the greater wax moth, which contributes to the dissemination of these Nosema species between beehives.


Microbiology ◽  
2011 ◽  
Vol 157 (11) ◽  
pp. 3124-3137 ◽  
Author(s):  
Inês N. Silva ◽  
Ana S. Ferreira ◽  
Jörg D. Becker ◽  
James E. A. Zlosnik ◽  
David P. Speert ◽  
...  

Burkholderia cepacia complex (Bcc) bacteria are opportunistic pathogens infecting hosts such as cystic fibrosis (CF) patients. Long-term Bcc infection of CF patients’ airways has been associated with emergence of phenotypic variation. Here we studied two Burkholderia multivorans clonal isolates displaying different morphotypes from a chronically infected CF patient to evaluate trait development during lung infection. Expression profiling of mucoid D2095 and non-mucoid D2214 isolates revealed decreased expression of genes encoding products related to virulence-associated traits and metabolism in D2214. Furthermore, D2214 showed no exopolysaccharide production, lower motility and chemotaxis, and more biofilm formation, particularly under microaerophilic conditions, than the clonal mucoid isolate D2095. When Galleria mellonella was used as acute infection model, D2214 at a cell number of approximately 7×106 c.f.u. caused a higher survival rate than D2095, although 6 days post-infection most of the larvae were dead. Infection with the same number of cells by mucoid D2095 caused larval death by day 4. The decreased expression of genes involved in carbon and nitrogen metabolism may reflect lower metabolic needs of D2214 caused by lack of exopolysaccharide, but also by the attenuation of pathways not required for survival. As a result, D2214 showed higher survival than D2095 in minimal medium for 28 days under aerobic conditions. Overall, adaptation during Bcc chronic lung infections gave rise to genotypic and phenotypic variation among isolates, contributing to their fitness while maintaining their capacity for survival in this opportunistic human niche.


2017 ◽  
Vol 66 (4) ◽  
pp. 501-508 ◽  
Author(s):  
Rambha K. Shah ◽  
Zhao H. Ni ◽  
Xiao Y. Sun ◽  
Guo Q. Wang ◽  
Fan Li

Klebsiella pneumoniae strains that are commonly recognized by clinicians and microbiologists are termed as classical K. pneumoniae (cKP). A strain with capsule-associated mucopolysaccharide web is known as hypervirulent K. pneumoniae (hvKP) as it enhances the serum resistant and biofilm production. Aim is to determine and correlate various virulence genes, ESBL, serum bactericidal effect and biofilm formation of clinical isolated cKP and hvKP from respiratory tract infected patients. A total of 96 K. pneumoniae strains were isolated from sputum of respiratory tract infected patients. The isolates were performed string test, AST, ESBL virulence gene, serum bactericidal and biofilm assays. Out of 96 isolates, 39 isolates (40.6%) were identified with hypervirulent phenotypes. The number of cKP exhibiting resistance to the tested antimicrobials and ESBLs were significantly higher than that of the hvKP strains. The virulence genes of K. pneumoniae such as K1, K2, rmpA, uge, kfu and aerobactin were strongly associated with hvKP than cKP. However, no significant difference was found in FIM-1 and MrKD3 genes. ESBL producing cKP and hvKP were significantly associated with strong biofilm formation (both P < 0.05) and highly associated with bactericidal effect of serum (both P < 0.05) than cKP strains. However, neither biofilm formation nor bactericidal effect of serum was found with significant difference in between ESBL producing cKP and ESBL producing hvKP strains (both P > 0.05). Although the hvKP possess more virulence gene, but they didn’t show any significant difference between biofilm formation and bactericidal effect of serum compared with ESBL producing cKP strains.


2020 ◽  
Author(s):  
Weiliang Zeng ◽  
Tao Chen ◽  
Qing Wu ◽  
Ye Xu ◽  
Kaihang Yu ◽  
...  

Abstract BackgroundDaptomycin has broad-spectrum antibacterial activity against Gram-positive pathogens, but recent studies have revealed cases where daptomycin has failed to treat multidrug-resistant bacteria, such as vancomycin-resistant Enterococcus faecium. However, the resistance evolution of E. faecium to daptomycin in vitro and fitness cost remain unclear. In this study, we sought to analyze the resistance development and mechanism of E. faecium to datomycin, and futher to investigate the relationship between daptomycin resistance and fitness cost.MethodsTo investigate the development of daptomycin resistance in E. faecium, 6 daptomycin-susceptible (DAP-S) clinical isolates, including 3 vancomycin-resistant E. faecium (VRE) and 3 vancomycin-susceptible E. faecium (VSE), were exposured to daptomycin in vitro by serial passage experiment. Then the different resistance mechanisms of daptomycin-resistant (DAP-R) mutants were analyzed by polymerase chain reaction (PCR), cytochrome C binding assay and transmission electron microscopy. Furthermore, we also estimated the changes of fitness cost among each highly DAP-R mutants by bacterial growth curve measurement, in vitro competition experiments, infection model of Galleria mellonella larvae and biofilm formation assays.ResultsIn vitro, a total of 21 DAP-R mutants with minimal inhibitory concentration (MIC) of 4 to 512 μg/mL were obtained, and these mutants carried more than one mutation of LiaFSR and YycFG system encoding genes. More positive charges were detected among highly DAP-R mutants than parent isolates, and the cell walls of SC1174-D and SC1762-D mutants were remarkly thicker than those of the parent isolates. In comparison with parent isolates, besides, the growth, competition ability and virulence were significantly reduced, while the biofilm formation capacity was markedly elevated among each highly DAP-R mutants.ConclusionsOur findings suggest that E. faecium isolates are able to rapidly acquire DAP resistance in vitro through different dynamic resistance mechanisms, which often accompany by significant fitness cost. Intriguingly, DAP and glycopeptide antibiotics may present collateral-sensitivity during E. faecium acquired DAP resistance in vitro.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11196
Author(s):  
Eden Mannix-Fisher ◽  
Samantha McLean

Background The increasing prevalence of bacterial infections that are resistant to antibiotic treatment has caused the scientific and medical communities to look for alternate remedies aimed at prevention and treatment. In addition to researching novel antimicrobials, there has also been much interest in revisiting some of the earliest therapies used by man. One such antimicrobial is silver; its use stretches back to the ancient Greeks but interest in its medicinal properties has increased in recent years due to the rise in antibiotic resistance. Currently antimicrobial silver is found in everything from lunch boxes to medical device implants. Though much is claimed about the antimicrobial efficacy of silver salts the research in this area is mixed. Methods Herein we investigated the efficacy of silver acetate against a carbapenem resistant strain of Acinetobacter baumannii to determine the in vitro activity of this silver salt against a World Health Organisation designated category I critical pathogen. Furthermore, we use the Galleria mellonella larvae model to assess toxicity of the compound and its efficacy in treating infections in a live host. Results We found that silver acetate can be delivered safely to Galleria at medically relevant and antimicrobial levels without detriment to the larvae and that administration of silver acetate to an infection model significantly improved survival. This demonstrates the selective toxicity of silver acetate for bacterial pathogens but also highlights the need for administration of well-defined doses of the antimicrobial to provide an efficacious treatment.


2021 ◽  
Author(s):  
Mario López-Martín ◽  
Jean-Frédéric Dubern ◽  
Morgan R. Alexander ◽  
Paul Williams

Acinetobacter baumannii possesses a single divergent luxR/luxI-type quorum sensing (QS) locus named abaR/abaI. This locus also contains a third gene located between abaR and abaI which we term abaM that codes for an uncharacterized member of the RsaM protein family known to regulate N-acylhomoserine lactone (AHL) dependent QS in other β- and γ-proteobacteria. Here we show that disruption of abaM via a T26 insertion in A. baumannii strain AB5075 resulted in increased production of N-(3-hydroxydodecanoyl)-L-homoserine lactone (OHC12) and enhanced surface motility and biofilm formation. In contrast to the wild type and abaI::T26 mutant, the virulence of the abaM::T26 mutant was completely attenuated in a Galleria mellonella infection model. Transcriptomic analysis of the abaM::T26 mutant revealed that AbaM differentially regulates at least 76 genes including the csu pilus operon and the acinetin 505 lipopeptide biosynthetic operon, that are involved in surface adherence, biofilm formation and virulence. A comparison of the wild type, abaM::T26 and abaI::T26 transcriptomes, indicates that AbaM regulates ∼21% of the QS regulon including the csu operon. Moreover, the QS genes (abaI/abaR) were among the most upregulated in the abaM::T26 mutant. A. baumannii lux-based abaM reporter gene fusions revealed that abaM expression is positively regulated by QS but negatively auto-regulated. Overall, the data presented in this work demonstrates that AbaM plays a central role in regulating A. baumannii QS, virulence, surface motility and biofilm formation. Importance Acinetobacter baumanni is a multi-antibiotic resistant pathogen of global healthcare importance. Understanding Acinetobacter virulence gene regulation could aid the development of novel anti-infective strategies. In A. baumannii, the abaR and abaI genes that code for the receptor and synthase components of an N-acylhomoserine (AHL) lactone-dependent quorum sensing system (QS) are separated by abaM. Here we show that although mutation of abaM increased AHL production, surface motility and biofilm development, it resulted in the attenuation of virulence. AbaM was found to control both QS-dependent and QS-independent genes. The significance of this work lies in the identification of AbaM, an RsaM ortholog known to control virulence in plant pathogens, as a modulator of virulence in a human pathogen.


2019 ◽  
Author(s):  
OUYANG Pengwen ◽  
Bin JIANG ◽  
Juan WANG ◽  
Na PENG ◽  
Jianrong YE ◽  
...  

Abstract Background Carbapenem-resistant Klebsiella pneumoniae (CRKP) have been a clinically significant pathogen worldwide, but related reports about their virulence features in hospital-acquired infections (HAI) are pretty lacking.Methods CRKP causing HAI were continuously collected in 2018 from a hospital in central China. Isolates identification and antimicrobial susceptibility test were done using VITEK-2 compact system or MALDI-TOF MS. String test, multilocus sequence typing, carbapenemase genes, virulence genes and capsular antigen genes detection were conducted to understand their phenotype and genetic background. As well as case datas were collected and compared to assess their virulence characteristics.Results A total of 62 isolates of CRKP from 62 patients with HAI were collected. 41 carbapenemase genestic-confirmed hypervirulent Klebsiella pneumoniae (CR-hvKP) and 21 carbapenem resistant non-hypervirulent Klebsiella pneumoniae (CR-NhvKP) were screened out. Most CRKP causing HAI were ST11 KPC-2 producing strains and maily causing pneumonia. Only for blaKPC-2 there was a significant difference between CR-hvKP and CR-NhvKP (p<0.001). No significant difference of the two group strains in resistance against amikacin, trimethoprim-sulfamethoxazoleare, cefepime, ceftazidime, imipenem, piperacillin-tazobactam, colistin and tigecycline were found except levofloxacin (p<0.001), and all strains showed sensitive to tigecycline and colistin. In the CR-hvKP group, IucA (64.5%) were the most commonly detected virulence gene, followed by iroN (48.4%), prmpA2 (30.6%) and prmpA (4.8%), only 1 (2.4%) capsular serotype positive strain and 2 (4.9%) hypermucoviscosity phenotype strains were detected, while no hypermucoviscosity phenotype or capsular antigen gene positive strain was detected in the CR-NhvKP group. And there was no significant difference between the two groups in age, types of infection, departmental distribution, survival time or the final outcome of infection.Conclusion ST11 KPC-2-producing Klebsiella pneumoniae are most prevalent CRKP in HAI. Virulence gene espacially iucA has a high proportion and worth paying attention to. Hypermucoviscous phenotype and virulence-associated capsular serotype in CRKP both have a low prevalence. CRKP harboring virulence genes have a higher expression of KPC-2 and less sensitive to levofloxacin than those harboring no virulence gene, and there is no significant difference for virulence manifestations between the two groups.


Sign in / Sign up

Export Citation Format

Share Document