scholarly journals Image-to-Image Translation for Simplified MRI Muscle Segmentation

2021 ◽  
Vol 1 ◽  
Author(s):  
Michael Gadermayr ◽  
Lotte Heckmann ◽  
Kexin Li ◽  
Friederike Bähr ◽  
Madlaine Müller ◽  
...  

Deep neural networks recently showed high performance and gained popularity in the field of radiology. However, the fact that large amounts of labeled data are required for training these architectures inhibits practical applications. We take advantage of an unpaired image-to-image translation approach in combination with a novel domain specific loss formulation to create an “easier-to-segment” intermediate image representation without requiring any label data. The requirement here is that the task can be translated from a hard to a related but simplified task for which unlabeled data are available. In the experimental evaluation, we investigate fully automated approaches for segmentation of pathological muscle tissue in T1-weighted magnetic resonance (MR) images of human thighs. The results show clearly improved performance in case of supervised segmentation techniques. Even more impressively, we obtain similar results with a basic completely unsupervised segmentation approach.

Author(s):  
David L. Rowland ◽  
Gene Moyle ◽  
Stewart E. Cooper

Strategies for addressing anxiety-related decrements in performance have been implemented across a variety of domains, including Sex, Sport, and Stage. In this review, we (1) iterate the dominant anxiety-related remediation strategies within each of these domains; (2) identify over-lapping and domain-specific strategies; and (3) attempt to unify the conceptualization of performance-related anxiety across these three areas under the information-processing framework of the Reflective/deliberative—Impulsive/automatic Model (RIM). Despite both diversity and similarity in remediation approaches across domains, we found that many strategies appear to share the common goal of maintaining a dominant automatic style of information processing in high performance demand situations. We then describe how various remediation strategies might hypothetically fit within the RIM framework and its subcomponents, identifying each intervention as falling into one or more broad categories related to achieving and/or maintaining dominance in automatic information processing. We conclude by affirming the benefit of adopting a unifying information-processing framework for the conceptualization of performance-related anxiety, as a way of both guiding future cross- and inter- disciplinary research and elucidating effective remediation models that share common pathways/mechanisms to improved performance.


2020 ◽  
Author(s):  
Jamie Buck ◽  
Rena Subotnik ◽  
Frank Worrell ◽  
Paula Olszewski-Kubilius ◽  
Chi Wang

Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1130
Author(s):  
Mariana Pires Figueiredo ◽  
Ana Borrego-Sánchez ◽  
Fátima García-Villén ◽  
Dalila Miele ◽  
Silvia Rossi ◽  
...  

This work presents the development of multifunctional therapeutic membranes based on a high-performance block copolymer scaffold formed by polyether (PE) and polyamide (PA) units (known as PEBA) and layered double hydroxide (LDH) biomaterials, with the aim to study their uses as wound dressings. Two LDH layer compositions were employed containing Mg2+ or Zn2+, Fe3+ and Al3+ cations, intercalated with chloride anions, abbreviated as Mg-Cl or Zn-Cl, or intercalated with naproxenate (NAP) anions, abbreviated as Mg-NAP or Zn-NAP. Membranes were structurally and physically characterized, and the in vitro drug release kinetics and cytotoxicity assessed. PEBA-loading NaNAP salt particles were also prepared for comparison. Intercalated NAP anions improved LDH–polymer interaction, resulting in membranes with greater mechanical performance compared to the polymer only or to the membranes containing the Cl-LDHs. Drug release (in saline solution) was sustained for at least 8 h for all samples and release kinetics could be modulated: a slower, an intermediate and a faster NAP release were observed from membranes containing Zn-NAP, NaNAP and Mg-NAP particles, respectively. In general, cell viability was higher in the presence of Mg-LDH and the membranes presented improved performance in comparison with the powdered samples. PEBA containing Mg-NAP sample stood out among all membranes in all the evaluated aspects, thus being considered a great candidate for application as multifunctional therapeutic dressings.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 235
Author(s):  
Shuqi Zhao ◽  
Tongtong Yu ◽  
Ziming Wang ◽  
Shilei Wang ◽  
Limei Wei ◽  
...  

Two-dimensional (2D) materials driven by their unique electronic and optoelectronic properties have opened up possibilities for their various applications. The large and high-quality single crystals are essential to fabricate high-performance 2D devices for practical applications. Herein, IV-V 2D GeP single crystals with high-quality and large size of 20 × 15 × 5 mm3 were successfully grown by the Bi flux growth method. The crystalline quality of GeP was confirmed by high-resolution X-ray diffraction (HRXRD), Laue diffraction, electron probe microanalysis (EPMA) and Raman spectroscopy. Additionally, intrinsic anisotropic optical properties were investigated by angle-resolved polarized Raman spectroscopy (ARPRS) and transmission spectra in detail. Furthermore, we fabricated high-performance photodetectors based on GeP, presenting a relatively large photocurrent over 3 mA. More generally, our results will significantly contribute the GeP crystal to the wide optoelectronic applications.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Myungwoo Son ◽  
Jaewon Jang ◽  
Yongsu Lee ◽  
Jungtae Nam ◽  
Jun Yeon Hwang ◽  
...  

AbstractHere, we demonstrate the fabrication of a Cu-graphene heterostructure interconnect by the direct synthesis of graphene on a Cu interconnect with an enhanced performance. Multilayer graphene films were synthesized on Cu interconnect patterns using a liquid benzene or pyridine source at 400 °C by atmospheric pressure chemical vapor deposition (APCVD). The graphene-capped Cu interconnects showed lower resistivity, higher breakdown current density, and improved reliability compared with those of pure Cu interconnects. In addition, an increase in the carrier density of graphene by doping drastically enhanced the reliability of the graphene-capped interconnect with a mean time to failure of >106 s at 100 °C under a continuous DC stress of 3 MA cm−2. Furthermore, the graphene-capped Cu heterostructure exhibited enhanced electrical properties and reliability even if it was a damascene-patterned structure, which indicates compatibility with practical applications such as next-generation interconnect materials in CMOS back-end-of-line (BEOL).


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 589
Author(s):  
Sivagowri Shanmugaratnam ◽  
Balaranjan Selvaratnam ◽  
Aravind Baride ◽  
Ranjit Koodali ◽  
Punniamoorthy Ravirajan ◽  
...  

Earth–abundant transition metal chalcogenide materials are of great research interest for energy production and environmental remediation, as they exhibit better photocatalytic activity due to their suitable electronic and optical properties. This study focuses on the photocatalytic activity of flower-like SnS2 nanoparticles (composed of nanosheet subunits) embedded in TiO2 synthesized by a facile hydrothermal method. The materials were characterized using different techniques, and their photocatalytic activity was assessed for hydrogen evolution reaction and the degradation of methylene blue. Among the catalysts studied, 10 wt. % of SnS2 loaded TiO2 nanocomposite shows an optimum hydrogen evolution rate of 195.55 µmolg−1, whereas 15 wt. % loading of SnS2 on TiO2 exhibits better performance against the degradation of methylene blue (MB) with the rate constant of 4.415 × 10−4 s−1 under solar simulated irradiation. The improved performance of these materials can be attributed to the effective photo-induced charge transfer and reduced recombination, which make these nanocomposite materials promising candidates for the development of high-performance next-generation photocatalyst materials. Further, scavenging experiments were carried out to confirm the reactive oxygen species (ROS) involved in the photocatalytic degradation. It can be observed that there was a 78% reduction in the rate of degradation when IPA was used as the scavenger, whereas around 95% reduction was attained while N2 was used as the scavenger. Notably, very low degradation (<5%) was attained when the dye alone was directly under solar irradiation. These results further validate that the •OH radical and the superoxide radicals can be acknowledged for the degradation mechanism of MB, and the enhancement of degradation efficiency may be due to the combined effect of in situ dye sensitization during the catalysis and the impregnation of low bandgap materials on TiO2.


Nanoscale ◽  
2016 ◽  
Vol 8 (5) ◽  
pp. 2857-2866 ◽  
Author(s):  
Matilde Saura-Múzquiz ◽  
Cecilia Granados-Miralles ◽  
Marian Stingaciu ◽  
Espen Drath Bøjesen ◽  
Qiang Li ◽  
...  

High-performance hexaferrite magnets of aligned single-domain nanoplatelets are obtained by supercritical synthesis and compaction through Spark Plasma Sintering.


Nanophotonics ◽  
2017 ◽  
Vol 6 (4) ◽  
pp. 663-679 ◽  
Author(s):  
Francesco Chiavaioli ◽  
Francesco Baldini ◽  
Sara Tombelli ◽  
Cosimo Trono ◽  
Ambra Giannetti

AbstractOptical fiber gratings (OFGs), especially long-period gratings (LPGs) and etched or tilted fiber Bragg gratings (FBGs), are playing an increasing role in the chemical and biochemical sensing based on the measurement of a surface refractive index (RI) change through a label-free configuration. In these devices, the electric field evanescent wave at the fiber/surrounding medium interface changes its optical properties (i.e. intensity and wavelength) as a result of the RI variation due to the interaction between a biological recognition layer deposited over the fiber and the analyte under investigation. The use of OFG-based technology platforms takes the advantages of optical fiber peculiarities, which are hardly offered by the other sensing systems, such as compactness, lightness, high compatibility with optoelectronic devices (both sources and detectors), and multiplexing and remote measurement capability as the signal is spectrally modulated. During the last decade, the growing request in practical applications pushed the technology behind the OFG-based sensors over its limits by means of the deposition of thin film overlays, nanocoatings, and nanostructures, in general. Here, we review efforts toward utilizing these nanomaterials as coatings for high-performance and low-detection limit devices. Moreover, we review the recent development in OFG-based biosensing and identify some of the key challenges for practical applications. While high-performance metrics are starting to be achieved experimentally, there are still open questions pertaining to an effective and reliable detection of small molecules, possibly up to single molecule, sensing in vivo and multi-target detection using OFG-based technology platforms.


2006 ◽  
Vol 532-533 ◽  
pp. 333-336 ◽  
Author(s):  
Bok Choon Kang ◽  
Chathura Nalendra Herath ◽  
Jong Kwang Park ◽  
Yong Hwang Roh

Carbon, aramid and glass fibers are inherently superior to conventional textile fibers in terms of mechanical properties and other characteristics. However, each material has its inherent advantages and disadvantages and it is usually recommended to hybridize them to fully benefit of their high performance in practical applications to many products. This paper is concerned with an air texturing process for hybridization of different reinforcement filament yarns. A normal air texturing machine was selected for process development and modified to suit testing purposes. The modified process for hybridization was introduced mainly in terms of air-jet nozzles employed in experiments. With the proposed air texturing process machine, three types of air-nozzle were applied to the experimental work. Three different filament materials were employed in experiments and they are carbon (CF), aramid (AF), and glass (GF). As matrix materials, polyether-ether (PEEK), polyester (PES), and polypropylene (PP) were selected and experimented. Hybrid yarns produced form the proposed process was evaluated optically in terms of bulkiness, arranging, breaking, and mixing, respectively. The experimental results were also summarized in terms of relationships between applied air pressure and yarn count, and variation in count. As a whole, it was concluded from the experiments that the proposed texturing process could be successfully applied to the practical hybridization of different reinforcement filament yarns. It was also revealed from the experiments that the air pressure in the proposed process is not a significant parameter on the pressing in terms of yarn count.


2015 ◽  
Vol 3 (7) ◽  
pp. 3962-3967 ◽  
Author(s):  
Xiaolei Wang ◽  
Ge Li ◽  
Fathy M. Hassan ◽  
Matthew Li ◽  
Kun Feng ◽  
...  

High-performance robust CNT–graphene–Si composites are designed as anode materials with enhanced rate capability and excellent cycling stability for lithium-ion batteries. Such an improvement is mainly attributed to the robust sponge-like architecture, which holds great promise in future practical applications.


Sign in / Sign up

Export Citation Format

Share Document