scholarly journals Oral Microbiome and Gingival Gene Expression of Inflammatory Biomolecules With Aging and Periodontitis

2021 ◽  
Vol 2 ◽  
Author(s):  
Jeffrey L. Ebersole ◽  
Radhakrishnan Nagarajan ◽  
Sreenatha Kirakodu ◽  
Octavio A. Gonzalez

Although data describe the presence and increase of inflammatory mediators in the local environment in periodontitis vs. health in humans, details regarding how these responses evolve in the transition from health to disease, changes during disease progression, and features of a resolved lesion remain unknown. This study used a nonhuman primate model of ligature-induced periodontitis in young, adolescent, adult, and aged animals to document features of inflammatory response affected by age. Rhesus monkeys had ligatures tied and provided gingival tissue biopsy specimens at baseline, 0.5, 1, and 3 months of disease and at 5 months of the study, which was 2 months post-ligature removal for clinically resolved tissues. The transcriptome was assessed using microarrays for chemokine (n = 41), cytokine (n = 45), chemokine receptor (n = 21), cytokine receptor (n = 37), and lipid mediator (n = 31) genes. Limited differences were noted in healthy tissues for chemokine expression with age; however, chemokine receptor genes were decreased in young but elevated in aged samples. IL1A, IL36A, and IL36G cytokines were decreased in the younger groups, with IL36A elevated in aged animals. IL10RA/IL10RB cytokine receptors were altered with age. Striking variation in the lipid mediator genes in health was observed with nearly 60% of these genes altered with age. A specific repertoire of chemokine and chemokine receptor genes was affected by the disease process, predominated by changes during disease initiation. Cytokine/cytokine receptor genes were also elevated with disease initiation, albeit IL36B, IL36G, and IL36RN were all significantly decreased throughout disease and resolution. Significant changes were observed in similar lipid mediator genes with disease and resolution across the age groups. Examination of the microbiome links to the inflammatory genes demonstrated that specific microbes, including Fusobacterium, P. gingivalis, F. alocis, Pasteurellaceae, and Prevotella are most frequently significantly correlated. These correlations were generally positive in older animals and negative in younger specimens. Gene expression and microbiome patterns from baseline were distinctly different from disease and resolution. These results demonstrate patterns of inflammatory gene expression throughout the phases of the induction of a periodontal disease lesion. The patterns show a very different relationship to specific members of the oral microbiome in younger compared with older animals.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeffrey L. Ebersole ◽  
Radhakrishnan Nagarajan ◽  
Sreenatha Kirakodu ◽  
Octavio A. Gonzalez

AbstractWe used a nonhuman primate model of ligature-induced periodontitis to identify patterns of gingival transcriptomic after changes demarcating phases of periodontitis lesions (initiation, progression, resolution). A total of 18 adult Macaca mulatta (12–22 years) had ligatures placed (premolar, 1st molar teeth) in all 4 quadrants. Gingival tissue samples were obtained (baseline, 2 weeks, 1 and 3 months during periodontitis and at 5 months resolution). Gene expression was analyzed by microarray [Rhesus Gene 1.0 ST Array (Affymetrix)]. Compared to baseline, a large array of genes were significantly altered at initiation (n = 6049), early progression (n = 4893), and late progression (n = 5078) of disease, with the preponderance being up-regulated. Additionally, 1918 genes were altered in expression with disease resolution, skewed towards down-regulation. Assessment of the genes demonstrated specific profiles of epithelial, bone/connective tissue, apoptosis/autophagy, metabolism, regulatory, immune, and inflammatory responses that were related to health, stages of disease, and tissues with resolved lesions. Unique transcriptomic profiles occured during the kinetics of the periodontitis lesion exacerbation and remission. We delineated phase specific gene expression profiles of the disease lesion. Detection of these gene products in gingival crevicular fluid samples from human disease may contribute to a better understanding of the biological dynamics of the disease to improve patient management.


2021 ◽  
Author(s):  
Jeffrey Ebersole ◽  
Radhakrishnan Nagarajan ◽  
Sreenatha Kirakodu ◽  
Octavio A. Gonzalez

Abstract We used a nonhuman primate model of ligature-induced periodontitis to identify patterns of gingival transcriptomic changes demarcating phases of periodontitis lesions (initiation, progression, resolution). 18 adult Mulatta macaca (12-22 years) had ligatures placed (premolar, 1st molar teeth) in all 4 quadrants. Gingival tissue samples were obtained (baseline, 2 weeks, 1 and 3 months during periodontitis and at 5 months resolution). Gene expression was analyzed by microarray [Rhesus Gene 1.0 ST Array (Affymetrix)]. Compared to baseline, a large array of genes were significantly altered at initiation (n=6049), early progression (n=4893), and late progression (n=5078) of disease, with the preponderance being up-regulated. Additionally, 1918 genes were altered in expression with disease resolution, skewed towards down-regulation. Assessment of the genes demonstrated specific profiles of epithelial, bone/connective tissue, apoptosis/autophagy, metabolism, regulatory, immune, and inflammatory responses that were related to health, stages of disease, and tissues with resolved lesions. Unique transcriptomic profiles occured during the kinetics of the periodontitis lesion exacerbation and remission. We delineated phase specific gene expression profiles of the disease lesion. Detection of these gene products in gingival crevicular fluid samples from human disease may contribute to a better understanding of the biological dynamics of the disease to improve patient management.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1611
Author(s):  
Nur Fathiah Abdul Abdul Sani ◽  
Ahmad Imran Zaydi Amir Amir Hamzah ◽  
Zulzikry Hafiz Abu Abu Bakar ◽  
Yasmin Anum Mohd Mohd Yusof ◽  
Suzana Makpol ◽  
...  

The mechanism of cognitive aging at the molecular level is complex and not well understood. Growing evidence suggests that cognitive differences might also be caused by ethnicity. Thus, this study aims to determine the gene expression changes associated with age-related cognitive decline among Malay adults in Malaysia. A cross-sectional study was conducted on 160 healthy Malay subjects, aged between 28 and 79, and recruited around Selangor and Klang Valley, Malaysia. Gene expression analysis was performed using a HumanHT-12v4.0 Expression BeadChip microarray kit. The top 20 differentially expressed genes at p < 0.05 and fold change (FC) = 1.2 showed that PAFAH1B3, HIST1H1E, KCNA3, TM7SF2, RGS1, and TGFBRAP1 were regulated with increased age. The gene set analysis suggests that the Malay adult’s susceptibility to developing age-related cognitive decline might be due to the changes in gene expression patterns associated with inflammation, signal transduction, and metabolic pathway in the genetic network. It may, perhaps, have important implications for finding a biomarker for cognitive decline and offer molecular targets to achieve successful aging, mainly in the Malay population in Malaysia.


2020 ◽  
Vol 35 (3) ◽  
pp. 529-544 ◽  
Author(s):  
F Horta ◽  
S Catt ◽  
P Ramachandran ◽  
B Vollenhoven ◽  
P Temple-Smith

Abstract STUDY QUESTION Does female ageing have a negative effect on the DNA repair capacity of oocytes fertilised by spermatozoa with controlled levels of DNA damage? SUMMARY ANSWER Compared to oocytes from younger females, oocytes from older females have a reduced capacity to repair damaged DNA introduced by spermatozoa. WHAT IS KNOWN ALREADY The reproductive lifespan in women declines with age predominantly due to poor oocyte quality. This leads to decreased reproductive outcomes for older women undergoing assisted reproductive technology (ART) treatments, compared to young women. Ageing and oocyte quality have been clearly associated with aneuploidy, but the range of factors that influence this change in oocyte quality with age remains unclear. The DNA repair activity prior to embryonic genomic activation is considered to be of maternal origin, with maternal transcripts and proteins controlling DNA integrity. With increasing maternal age, the number of mRNAs stored in oocytes decreases. This could result in diminished efficiency of DNA repair and/or negative effects on embryo development, especially in the presence of DNA damage. STUDY DESIGN, SIZE, DURATION Oocytes from two age groups of 30 super-ovulated female mice (young: 5–8 weeks old, n = 15; old: 42–45 weeks old, n = 15) were inseminated with sperm from five males with three different controlled DNA damage levels; control: ≤10%, 1 Gray (Gy): 11–30%, and 30 Gy: &gt;30%. Inseminated oocytes (young: 125, old: 78) were assessed for the formation of zygotes (per oocyte) and blastocysts (per zygote). Five replicates of five germinal vesicles (GVs) and five MII oocytes from each age group were analysed for gene expression. The DNA damage response (DDR) was assessed in a minimum of three IVF replicates in control and 1 Gy zygotes and two-cell embryos using γH2AX labelling. PARTICIPANTS/MATERIALS, SETTING, METHODS Swim-up sperm samples from the cauda epididymidis of C57BL6 mice were divided into control (no irradiation) and 1- and 30-Gy groups. Treated spermatozoa were irradiated at 1 and 30 Gy, respectively, using a linear accelerator Varian 21iX. Following irradiation, samples were used for DNA damage assessment (Halomax) and for insemination. Presumed zygotes were cultured in a time-lapse incubator (MIRI, ESCO). Gene expression of 91 DNA repair genes was assessed using the Fluidigm Biomark HD system. The DNA damage response in zygotes (6–8 h post-fertilisation) and two-cell embryos (22–24 h post-fertilisation) was assessed by immunocytochemical analysis of γH2AX using confocal microscopy (Olympus FV1200) and 3D volumetric analysis using IMARIS software. MAIN RESULTS AND THE ROLE OF CHANCE The average sperm DNA damage for the three groups was statistically different (control: 6.1%, 1 Gy: 16.1%, 30 Gy: 53.1%, P &lt; 0.0001), but there were no significant differences in fertilisation rates after IVF within or between the two age groups [(young; control: 86.79%, 1 Gy: 82.75%, 30 Gy: 76.74%) (old; control: 93.1%, 1 Gy: 70.37%, 30 Gy: 68.18%) Fisher’s exact]. However, blastocyst rates were significantly different (P &lt; 0.0001) among the groups [(young; control: 86.95%, 1 Gy: 33.33%, 30 Gy: 0.0%) (old; control: 70.37%, 1 Gy: 0.0%, 30 Gy: 0.0%)]. Between the age groups, 1-Gy samples showed a significant decrease in the blastocyst rate in old females compared to young females (P = 0.0166). Gene expression analysis revealed a decrease in relative expression of 21 DNA repair genes in old GV oocytes compared to young GV oocytes (P &lt; 0.05), and similarly, old MII oocytes showed 23 genes with reduced expression compared to young MII oocytes (P &lt; 0.05). The number of genes with decreased expression in older GV and MII oocytes significantly affected pathways such as double strand break (GV: 5; MII: 6), nucleotide excision repair (GV: 8; MII: 5) and DNA damage response (GV: 4; MII: 8). There was a decreased DDR in zygotes and in two-cell embryos from old females compared to young regardless of sperm treatment (P &lt; 0.05). The decrease in DNA repair gene expression of oocytes and decreased DDR in embryos derived from older females suggests that ageing results in a diminished DNA repair capacity. LARGE-SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION Ionising radiation was used only for experimental purposes, aiming at controlled levels of sperm DNA damage; however, it can also damage spermatozoa proteins. The female age groups selected in mice were intended to model effects in young and old women, but clinical studies are required to demonstrate a similar effect. WIDER IMPLICATIONS OF THE FINDINGS Fertilisation can occur with sperm populations with medium and high DNA damage, but subsequent embryo growth is affected to a greater extent with aging females, supporting the theory that oocyte DNA repair capacity decreases with age. Assessment of the oocyte DNA repair capacity may be a useful diagnostic tool for infertile couples. STUDY FUNDING/COMPETING INTEREST(S) Funded by the Education Program in Reproduction and Development, Department of Obstetrics and Gynaecology, Monash University. None of the authors has any conflict of interest to report.


2016 ◽  
Vol 29 (2) ◽  
pp. 86-89 ◽  
Author(s):  
Joanna Luszczak ◽  
Michal Bartosik ◽  
Jolanta Rzymowska ◽  
Agnieszka Sochaczewska-Dolecka ◽  
Ewa Tomaszek ◽  
...  

AbstractAccording to some studies, the Entamoeba gingivalis colonizing the gingival tissue is an important agent in bringing about periodontitis. Other studies, however, deem it an opportunist that is able to survive in the medium induced by periodontal disease. The aim of this study was to investigate the prevalence of Entamoeba gingivalis infection in patients from the Department of Periodontology, and compare this population with that of healthy people, so as to analyze the relationships between infection and patient sex and age. The result of this work is that in both groups, a correlation (p = 0,19) has been noted between the occurrence of amoebae and other diseases in the oral cavity. Indeed, 81,4% of all patients with some periodontal disease showed the presence of amoeba. Among those who are not afflicted with oral diseases, the presence of amoeba was indicated in 62,5% of the total. In addition, a correlation between the person's age and the presence of protozoa (p = 0,15) was strongly marked among women (p = 0,19). In the three age groups of women in this study (40-49, 60-69, and above 80 years), we observed a 100% presence of protozoa.Our study leads us to the conclusion that infections with Entamoeba gingivalis should be regarded as an factor that is associated with the pathological changes occurring in patients with periodontal diseases.


2005 ◽  
Vol 99 (5) ◽  
pp. 1951-1957 ◽  
Author(s):  
Chandrasekhar Kesavan ◽  
Subburaman Mohan ◽  
Susanna Oberholtzer ◽  
Jon E. Wergedal ◽  
David J. Baylink

Our goal is to evaluate skeletal anabolic response to mechanical loading in different age groups of C57B1/6J (B6) and C3H/HeJ (C3H) mice with variable loads using bone size, bone mineral density (BMD), and gene expression changes as end points. Loads of 6–9 N were applied at 2 Hz for 36 cycles for 12 days on the tibia of 10-wk-old female B6 and C3H mice. Effects of a 9-N load on 10-, 16-, and 36-wk-old C3H mice were also studied. Changes in bone parameters were measured using peripheral quantitative computed tomography, and gene expression was determined by real-time PCR. Total volumetric BMD was increased by 5 and 15%, respectively, with 8- and 9-N loads in the B6, but not the C3H, mice. Increases of 20 and 12% in periosteal circumference were reflected by dramatic 44 and 26% increases in total area in B6 and C3H mice, respectively. The bone response to bending showed no difference in the three age groups of B6 and C3H mice. At 2 days, mechanical loading resulted in significant downregulation in expression of bone resorption (BR), but not bone formation (BF) marker genes. At 4 and 8 days of loading, expression of BF marker genes (type I collagen, alkaline phosphatase, osteocalcin, and bone sialoprotein) was increased two- to threefold and expression of BR marker genes (matrix metalloproteinase-9 and thrombin receptor-activating peptide) was decreased two- to fivefold. Although expression of BF marker genes was upregulated four- to eightfold at 12 days of training, expression of BR marker genes was upregulated seven- to ninefold. Four-point bending caused significantly greater changes in expression of BF and BR marker genes in bones of the B6 than the C3H mice. We conclude that mechanical loading-induced molecular pathways are activated to a greater extent in the B6 than in the C3H mice, resulting in a higher anabolic response in the B6 mice.


Author(s):  
Wongwarut Boonyanugomol ◽  
Kamolchanok Rukseree ◽  
Worrarat Kongkasame ◽  
Prasit Palittapongarnpim ◽  
Seung-Chul Baik ◽  
...  

CXC Chemokine Ligand 8 (CXCL8) plays an important role in gastric inflammation and in the progression of gastric cancer induced by Helicobacter pylori (H. pylori) infection. The association of CXCL8, CXC Chemokine Receptor 1 (CXCR1), and CXC Chemokine Receptor 2 (CXCR2) polymorphisms with H. pylori infection and gastric cancer progression needs to be investigated in a population within an enigma area consisting of multiple ethnicities, such as Thailand. To analyze the relative risk of H. pylori infection and gastric cancer among Thai gastroduodenal patients, gene polymorphisms in CXCL8 (promoter region -251) and in CXCR1 and CXCR2 (receptors for CXCL8) were detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and allele specific-PCR (AS-PCR). We also determined the presence of cytotoxin-associated gene A (cagA) in Thai patients with H. pylori infection. Correlation between the CXCL8 (-251) polymorphism and CXCL8 gene expression was evaluated by quantitative reverse transcriptase-PCR (qRT-PCR). We found a significant association between the T/A and A/A genotypes of CXCL8 (-251) with H. pylori infection. However, no significant correlation was found between the CXCR1 (+2607) and CXCR2 (+1208) gene polymorphisms with H. pylori infection among Thai gastroduodenal subjects. Within the H. pylori-infected group of Thai gastroduodenal patients, no significant differences in cagA were observed. In addition, the A/A genotype of CXCL8 (-251) significantly correlated with the risk of gastric cancer and correlated with higher CXCL8 gene expression levels in Thai gastroduodenal patients. These results suggest that CXCL8 (-251) polymorphisms are associated with H. pylori infection, an increased risk of stronger inflammatory responses, and gastric cancer in Thai gastroduodenal patients.  


Sign in / Sign up

Export Citation Format

Share Document