scholarly journals Plasma Levels of Keratinocyte Growth Factor Are Significantly Elevated for 5 Weeks After Minimally Invasive Colorectal Resection Which May Promote Cancer Recurrence and Metastasis

2021 ◽  
Vol 8 ◽  
Author(s):  
H. M. C. Shantha Kumara ◽  
Abhinit Shah ◽  
Hiromichi Miyagaki ◽  
Xiaohong Yan ◽  
Vesna Cekic ◽  
...  

Background: Human Keratinocyte Growth Factor (KGF) is an FGF family protein produced by mesenchymal cells. KGF promotes epithelial cell proliferation, plays a role in wound healing and may also support tumor growth. It is expressed by some colorectal cancers (CRC). Surgery's impact on KGF levels is unknown. This study's purpose was to assess plasma KGF levels before and after minimally invasive colorectal resection (MICR) for CRC.Aim: To determine plasma KGF levels before and after minimally invasive colorectal resection surgery for cancer pathology.Method: CRC MICR patients (pts) in an IRB approved data/plasma bank were studied. Pre-operative (pre-op) and post-operative (post-op) plasma samples were taken/stored. Late samples were bundled into 7 day blocks and considered as single time points. KGF levels (pg/ml) were measured via ELISA (mean ± SD). The Wilcoxon paired t-test was used for statistical analysis.Results: Eighty MICR CRC patients (colon 61%; rectal 39%; mean age 65.8 ± 13.3) were studied. The mean incision length was 8.37 ± 3.9 and mean LOS 6.5 ± 2.6 days. The cancer stage breakdown was; I (23), II (26), III (27), and IV (4). The median pre-op KGF level was 17.1 (95 %CI: 14.6–19.4; n = 80); significantly elevated (p < 0.05) median levels (pg/ml) were noted on post-op day (POD) 1 (23.4 pg/ml; 95% CI: 21.4–25.9; n = 80), POD 3 (22.5 pg/ml; 95% CI: 20.7–25.9; n = 76), POD 7–13 (21.8 pg/ml; 95% CI: 17.7–25.4; n = 50), POD 14–20 (20.1 pg/ml; 95% CI: 17.1–23.9; n = 33), POD 21–27 (19.6 pg/ml; 95% CI: 15.2–24.9; n = 15) and on POD 28–34 (16.7 pg/ml; 95% CI: 14.0–25.8; n = 12).Conclusion: Plasma KGF levels were significantly elevated for 5 weeks after MICR for CRC. The etiology of these changes is unclear, surgical trauma related acute inflammatory response and wound healing process may play a role. These changes, may stimulate angiogenesis in residual tumor deposits after surgery.

2002 ◽  
Vol 190 (3) ◽  
pp. 375-381 ◽  
Author(s):  
Takuro Kinbara ◽  
Fumiaki Shirasaki ◽  
Shigeru Kawara ◽  
Yutaka Inagaki ◽  
Benoit de Crombrugghe ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Richard Komakech ◽  
Motlalepula Gilbert Matsabisa ◽  
Youngmin Kang

Wounds remain one of the major causes of death worldwide. Over the years medicinal plants and natural compounds have played an integral role in wound treatment. Aspilia africana (Pers.) C. D. Adams which is classified among substances with low toxicity has been used for generations in African traditional medicine to treat wounds, including stopping bleeding even from severed arteries. This review examined the potential of the extracts and phytochemicals from A. africana, a common herbaceous flowering plant which is native to Africa in wound healing. In vitro and in vivo studies have provided strong pharmacological evidences for wound healing effects of A. africana-derived extracts and phytochemicals. Singly or in synergy, the different bioactive phytochemicals including alkaloids, saponins, tannins, flavonoids, phenols, terpenoids, β-caryophyllene, germacrene D, α-pinene, carene, phytol, and linolenic acid in A. africana have been observed to exhibit a very strong anti-inflammatory, antimicrobial, and antioxidant activities which are important processes in wound healing. Indeed, A. africana wound healing ability is furthermore due to the fact that it can effectively reduce wound bleeding, hasten wound contraction, increase the concentration of basic fibroblast growth factor (BFGF) and platelet derived growth factor, and stimulate the haematological parameters, including white and red blood cells, all of which are vital components for the wound healing process. Therefore, these facts may justify why A. africana is used to treat wounds in ethnomedicine.


2018 ◽  
Vol 17 (4) ◽  
pp. 236-246
Author(s):  
Saritphat Orrapin ◽  
Kittipan Rekasem

Ischemic wounds are the most severe expression of critical limb ischemia (CLI), and they have been defined clinically as an end stage of peripheral arterial disease. Urgent revascularization is a fundamental part for limb salvage in patients with CLI. However, the risk of revascularization should be weighed against the likelihood of success given a patient’s life-threatening comorbidities. Once the condition of arterial insufficiency is revascularized, wound care is an important aspect to promote the wound healing process and infection control. MOIST concept for wound care is a modern systematic treatment for enhanced wound healing process. Currently, advanced biological therapies are emerging in ischemic wound therapies to restore the wound healing process and involve active biological agents to support the wound healing process. We studied and summarized the different types of available topical biological therapies and their mechanisms on the healing process including platelet-derived growth factor, epidermal growth factor, fibroblast growth factor, and vascular endothelial growth factor, platelet-rich plasma, and honey for local wound care of patient with CLI. Our review suggests that topical platelet-derived growth factor, epidermal growth factor, platelet-rich plasma, and honey are available as well as considered in the ischemic wound healing process enhancement through the MOIST concept. In conclusion, biologic wound dressing or topical agent therapy may improve the wound healing process, increase limb salvage, is inexpensive, and provides potential safety with nontoxic low-risk therapy in patients with an ischemic wound. Thus, local wound care by biological dressing should be added in adjuvant treatment for ischemic wound patients. However, further randomized studies are needed to support efficacy and long-term outcomes of these biological dressing in patients with ischemic wound.


2012 ◽  
Vol 302 (8) ◽  
pp. C1213-C1225 ◽  
Author(s):  
Chen Zhang ◽  
Chek Kun Tan ◽  
Craig McFarlane ◽  
Mridula Sharma ◽  
Nguan Soon Tan ◽  
...  

Myostatin (Mstn) is a secreted growth and differentiation factor that belongs to the transforming growth factor-β (TGF-β) superfamily. Mstn has been well characterized as a regulator of myogenesis and has been shown to play a critical role in postnatal muscle regeneration. Herein, we report for the first time that Mstn is expressed in both epidermis and dermis of murine and human skin and that Mstn-null mice exhibited delayed skin wound healing attributable to a combination of effects resulting from delayed epidermal reepithelialization and dermal contraction. In epidermis, reduced keratinocyte migration and protracted keratinocyte proliferation were observed, which subsequently led to delayed recovery of epidermal thickness and slower reepithelialization. Furthermore, primary keratinocytes derived from Mstn-null mice displayed reduced migration capacity and increased proliferation rate as assessed through in vitro migration and adhesion assays, as well as bromodeoxyuridine incorporation and Western blot analysis. Moreover, in dermis, both fibroblast-to-myofibroblast transformation and collagen deposition were concomitantly reduced, resulting in a delayed dermal wound contraction. These decreases are due to the inhibition of TGF-β signaling. In agreement, the expression of decorin, a naturally occurring TGF-β suppressor, was elevated in Mstn-null mice; moreover, topical treatment with TGF-β1 protein rescued the impaired skin wound healing observed in Mstn-null mice. These observations highlight the interplay between TGF-β and Mstn signaling pathways, specifically through Mstn regulation of decorin levels during the skin wound healing process. Thus we propose that Mstn agonists might be beneficial for skin wound repair.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Nur Febrianti ◽  
Takdir Tahir ◽  
Saldy Yusuf

Background: Wounds occur when normal skin structures are damaged. Injury events in Indonesia have increased by 8.2% and the highest prevalence in South Sulawesi is 12.8%. One of the growth factors that play a role in the wound healing process is epidermal growth factor (EGF). EGF includes polypeptides that contain 53 amino acids, and EGF is present in all fluids in the body and platelets. This review aims to determine the role of EGF in the process of wound healing. Method: Data collected since 2017 using 8 databases (pubmed, science direct, google schollar) where the literature used is internationally published literature, additional references are taken from the bibliography of all relevant articles, all relevant articles are reviewed and analyzed. Results: EGF has a role in wound healing. EGF increases motility and epithelial cell migration. EGF can stimulate cell growth, proliferation and differentiation by binding to high affinity to the EGF receptor (EGFR) on the cell surface. The goal of EGF healing is most epithelial tissue, fibroblasts, and endothelial cells. EGF can call three important biological actions in tissue repair including cytoprotection, mitogenesis, and migration. Conclusion: EGF plays an important role in the wound healing process, especially in the re-epithelial process. Based on this review, it is suggested that the selection of dressings that are used should support EGF.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Sabrina Valente ◽  
Carmen Ciavarella ◽  
Emanuela Pasanisi ◽  
Francesca Ricci ◽  
Andrea Stella ◽  
...  

Vascular ulcers are a serious complication of peripheral vascular disease, especially in diabetics. Several approaches to treat the wounds are proposed but they show poor outcomes and require long healing times. Hepatocyte Growth Factor/Scatter Factor (HGF/SF) is a pleiotropic cytokine exerting many biological activities through the c-Met receptor. This study was aimed at verifying whether HGF/SF influences proliferation, migration, and angiogenesis on mesenchymal stem cells isolated from human arteries (hVW-MSCs). hVW-MSCs were exposed to NIBSC HGF/SF (2.5, 5, 10, and 70 ng/mL) from 6 hrs to 7 days. HGF and c-MET mRNA and protein expression, cell proliferation (Alamar Blue and Ki–67 assay), migration (scratch and transwell assays), and angiogenesis (Matrigel) were investigated. hVW-MSCs displayed stemness features and expressed HGF and c-MET. HGF/SF did not increase hVW-MSC proliferation, whereas it enhanced the cell migration, the formation of capillary-like structures, and the expression of angiogenic markers (vWF, CD31, and KDR). The HGF/SF effects on hVW-MSC migration and angiogenic potential are of great interest to accelerate wound healing process. Local delivery of HGF/SF could therefore improve the healing of unresponsive vascular ulcers.


Sign in / Sign up

Export Citation Format

Share Document