scholarly journals A Simple Control Strategy Based on Trajectory Planning for Vertical Acrobot

Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 308
Author(s):  
Lejun Wang ◽  
Siyu Chen ◽  
Pan Zhang ◽  
Jinhua She ◽  
Xuzhi Lai

This paper presents a simple control method on the basis of the trajectory planning for vertical Acrobot to accomplish the control goal of moving the system from the downward initial position (DIP) and steadying the system at the upward target position (UTP). First, for the active link, we frame a trajectory that contains some adjustable parameters. Along the framed trajectory, we can make the active link stabilize at its end angle from its start angle. Furthermore, we change the trajectory parameters to make the passive link also arrive at the zone near the end angle. Next, we devise a PD-based tracking controller to track this planned trajectory. In this way, the vertical Acrobot is swung up to a small zone near the UTP. Then, from the approximate linear model at the UTP, we devise a stabilization controller to stabilize the vertical Acrobot at the UTP. Finally, we implement the simulation to show the validity of the proposed method.

2016 ◽  
Vol 23 (3) ◽  
pp. 469-483 ◽  
Author(s):  
Dongho Kim ◽  
Youngjin Park

A tracking controller is proposed for a crane attached to a mobile harbor (MH) equipped with a dual-stage trolley system, to dynamically position a container from the MH to the container ship or vice versa. Wave-induced motions of the MH and container ship occur during loading and unloading operations owing to external disturbances such as waves. However, a challenging task is to move a payload with unwanted swing motions accurately to the loading and unloading positions on a moving target vessel. To solve this problem, a dynamic MH crane model is derived in three-dimensional space, with roll, pitch, and heave motions caused by sea-wave disturbances. The MH crane model is then linearized to design a tracking controller and the parameters of the linearized model are obtained by carrying out the system identification process. A preview tracking control method that includes feedback and feed-forward control with the predicted target position in the x-y plane in the near future is utilized. Through numerical simulations and experiments with a scaled model, the tracking performance of the proposed dynamic positioning control system is considered when sinusoidal roll and pitch motions of the MH are generated to mimic the wavy sea environment.


2021 ◽  
Vol 12 (2) ◽  
pp. 1073-1081
Author(s):  
Zhiguo Lu ◽  
Guoshuai Liu ◽  
Haibin Zhao ◽  
Ruchao Wang ◽  
Chong Liu

Abstract. The bionic-gibbon robot is a popular bionic robot. The bionic-gibbon robot can imitate a gibbon in completing brachiation motion between branches. With nonlinear and underactuated properties, the robot has important research value. This paper designs a type of bionic-gibbon robot with three links and two grippers. To simplify the controller, a plane control model is proposed, and its dynamic model is established. The control strategy in this paper divides the brachiation motion into several processes: adjust posture, open the gripper, the swing process and close the gripper. Based on sliding-mode control (SMC), the control method for the swing process is designed. The target position of the brachiation motion is set as the origin of the sliding-mode surface. In a finite time, the robot will reach the target position along the approach rate we adopt. In this way, the robot can complete the desired brachiation motion only by setting the position parameters of the target bar. We perform some simulations in ROS-Gazebo. The simulation results show that the bionic-gibbon robot can complete continuous brachiation motion on irregularly distributed bars. The sliding-mode control and the three-link structure significantly improve the robustness and swing efficiency of the bionic-gibbon robot.


2011 ◽  
Vol 11 (1) ◽  
pp. 16 ◽  
Author(s):  
Pisit Sukkarnkha ◽  
Chanin Panjapornpon

In this work, a new control method for uncertain processes is developed based on two-degree-of-freedom control structure. The setpoint tracking controller designed by input/output linearization technique is used to regulate the disturbance-free output and the disturbance rejection controller designed is designed by high-gain technique. The advantage of two-degree-of-freedom control structure is that setpoint tracking and load disturbance rejection controllers can be designed separately. Open-loop observer is applied to provide disturbance-free response for setpoint tracking controller. The process/disturbance-free model mismatches are fed to the disturbance rejection controller for reducing effect of disturbance. To evaluate the control performance, the proposed control method is applied through the example of a continuous stirred tank reactor with unmeasured input disturbances and random noise kinetic parametric uncertainties. The simulation results show that both types of disturbances can be effectively compensated by the proposed control method.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1015
Author(s):  
Mingfei Huang ◽  
Yongting Deng ◽  
Hongwen Li ◽  
Jing Liu ◽  
Meng Shao ◽  
...  

This paper concentrates on a robust resonant control strategy of a permanent magnet synchronous motor (PMSM) for electric drivers with model uncertainties and external disturbances to improve the control performance of the current loop. Firstly, to reduce the torque ripple of PMSM, the resonant controller with fractional order (FO) calculus is introduced. Then, a robust two degrees-of-freedom (Robust-TDOF) control strategy was designed based on the modified resonant controller. Finally, by combining the two control methods, this study proposes an enhanced Robust-TDOF regulation method, named as the robust two degrees-of-freedom resonant controller (Robust-TDOFR), to guarantee the robustness of model uncertainty and to further improve the performance with minimized periodic torque ripples. Meanwhile, a tuning method was constructed followed by stability and robust stability analysis. Furthermore, the proposed Robust-TDOFR control method was applied in the current loop of a PMSM to suppress the periodic current harmonics caused by non-ideal factors of inverter and current measurement errors. Finally, simulations and experiments were performed to validate our control strategy. The simulation and experimental results showed that the THDs (total harmonic distortion) of phase current decreased to a level of 0.69% and 5.79% in the two testing environments.


Author(s):  
Qijia Yao

Space manipulator is considered as one of the most promising technologies for future space activities owing to its important role in various on-orbit serving missions. In this study, a robust finite-time tracking control method is proposed for the rapid and accurate trajectory tracking control of an attitude-controlled free-flying space manipulator in the presence of parametric uncertainties and external disturbances. First, a baseline finite-time tracking controller is designed to track the desired position of the space manipulator based on the homogeneous method. Then, a finite-time disturbance observer is designed to accurately estimate the lumped uncertainties. Finally, a robust finite-time tracking controller is developed by integrating the baseline finite-time tracking controller with the finite-time disturbance observer. Rigorous theoretical analysis for the global finite-time stability of the whole closed-loop system is provided. The proposed robust finite-time tracking controller has a relatively simple structure and can guarantee the position and velocity tracking errors converge to zero in finite time even subject to lumped uncertainties. To the best of the authors’ knowledge, there are really limited existing controllers can achieve such excellent performance under the same conditions. Numerical simulations illustrate the effectiveness and superiority of the proposed control method.


2013 ◽  
Vol 68 (12) ◽  
pp. 2584-2590 ◽  
Author(s):  
Yiqi Liu ◽  
Ramon Ganigué ◽  
Keshab Sharma ◽  
Zhiguo Yuan

Chemicals such as magnesium hydroxide (Mg(OH)2) and iron salts are widely used to control sulfide-induced corrosion in sewer networks composed of interconnected sewer pipe lines and pumping stations. Chemical dosing control is usually non-automatic and based on experience, thus often resulting in sewage reaching the discharge point receiving inadequate or even no chemical dosing. Moreover, intermittent operation of pumping stations makes traditional control theory inadequate. A hybrid automata-based (HA-based) control method is proposed in this paper to coordinate sewage pumping station operations by considering their states, thereby ensuring suitable chemical concentrations in the network discharge. The performance of the proposed control method was validated through a simulation study of a real sewer network using real sewage flow data. The physical, chemical and biological processes were simulated using the well-established SeweX model. The results suggested that the HA-based control strategy significantly improved chemical dosing control performance and sulfide mitigation in sewer networks, compared to the current common practice.


2013 ◽  
Vol 732-733 ◽  
pp. 1261-1264
Author(s):  
Zhi Lei Yao ◽  
Lan Xiao ◽  
Jing Xu

An improved control strategy for three-phase grid-connected inverters with space vector pulse width modulation (SVPWM) is proposed. When the grid current contains harmonics, the d-and q-axes grid currents is interacted in the traditional control method, and the waveform quality of the grid current is poor. As the reference output voltage cannot directly reflect the change of the reference grid current with the traditional control strategy, the dynamic response of the grid-connected inverter is slow. In order to solve the aforementioned problems, the d-and q-axes grid currents in the decoupled components of the grid current controller are substituted by the d-and q-axes reference grid currents, respectively. The operating principles of the traditional and proposed control methods are illustrated. Experimental results show that the grid-connected inverter with the improved control strategy has high waveform quality of the grid current and fast dynamic response.


2012 ◽  
Vol 562-564 ◽  
pp. 1531-1536
Author(s):  
Ming Xing Zhu ◽  
Jing Bo Shi

In the inverter control system, two-phase modulated space vector pulse width modulation (SVPWM) algorithm has the advantages of minimum switch loss and higher utilization of direct current (DC) bus voltage. Non-dead-time control strategy can eliminate the problems of the dead time effects. But the traditional non-dead-time control strategy heavily depends on the current zero-crossing detection, which may cause the output voltage distortion or even a short circuit. Based on the analysis of the reason for the distortion, a new optimized non-dead-time control method is proposed. Two methods for the detection of the overlapping area are enumerated. The conclusions are confirmed by the simulation results with MATLAB/ SIMULINK.


Author(s):  
Y. P. Chien ◽  
Qing Xue

An efficient locally minimum-time trajectory planning algorithm for coordinately operating multiple robots is introduced. The task of the robots is to carry a common rigid object from an initial position to a final position along a given path in three-dimensional workspace in minimum time. The number of robots in the system is arbitrary. In the proposed algorithm, the desired motion of the common object carried by the robots is used as the key to planning of the trajectories of all the non-redundant robots involved. The search method is used in the trajectory planning. The planned robot trajectories satisfy the joint velocity, acceleration and torque constraints as well as the path constraints. The other constraints such as collision-free constraints, can be easily incorporated into the trajectory planning in future research.


Sign in / Sign up

Export Citation Format

Share Document