scholarly journals Plasma-Assisted Control of Supersonic Flow over a Compression Ramp

Aerospace ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 35 ◽  
Author(s):  
Yasumasa Watanabe ◽  
Alec Houpt ◽  
Sergey Leonov

This study considers the effect of an electric discharge on the flow structure near a 19.4° compression ramp in Mach-2 supersonic flow. The experiments were conducted in the supersonic wind tunnel SBR-50 at the University of Notre Dame. The stagnation temperature and pressure were varied in a range of 294–600 K and 1–3 bar, respectively, to attain various Reynolds numbers ranging from 5.3 × 105 to 3.4 × 106 based on the distance between the exit of the Mach-2 nozzle and the leading edge of the ramp. Surface pressure measurements, schlieren visualization, discharge voltage and current measurements, and plasma imaging with a high-speed camera were used to evaluate the plasma control authority on the ramp pressure distribution. The plasma being generated in front of the compression ramp shifted the shock position from the ramp corner to the electrode location, forming a flow separation zone ahead of the ramp. It was found that the pressure on the compression surface reduced almost linearly with the plasma power. The ratio of pressure change to flow stagnation pressure was also an increasing function of the ratio of plasma power to enthalpy flux, indicating that the task-related plasma control effectiveness ranged from 17.5 to 25.

2016 ◽  
Vol 11 (1) ◽  
pp. 23-33
Author(s):  
Maxim Golubev ◽  
Andrey Shmakov

The work presents the results of application of panoramic interferential technique which is based on elastic layers (sensors) usage to obtain pressure distribution on the flat plate having sharp leading edge. Experiments were done in supersonic wind tunnel at Mach number M = 4. Sensitivity and response time are shown to be enough to register pressure pulsation against standing and traveling sensor surface waves. Applying high-frequency image acquiring is demonstrated to make possible to distinguish at visualization images high-speed disturbances propagating in the boundary layer from low-speed surface waves


2021 ◽  
Author(s):  
E. J. Gunn ◽  
T. Brandvik ◽  
M. J. Wilson ◽  
R. Maxwell

Abstract This paper considers the impact of a damaged leading edge on the stall margin and stall inception mechanisms of a transonic, low pressure ratio fan. The damage takes the form of a squared-off leading edge over the upper half of the blade. Full-annulus, unsteady CFD simulations are used to explain the stall inception mechanisms for the fan at low- and high-speed operating points. A combination of steady and unsteady simulations show that the fan is predicted to be sensitive to leading edge damage at low speed, but insensitive at high speed. This blind prediction aligns well with rig test data. The difference in response is shown to be caused by the change between subsonic and supersonic flow regimes at the leading edge. Where the inlet relative flow is subsonic, rotating stall is initiated by growth and propagation of a subsonic leading edge flow separation. This separation is shown to be triggered at higher mass flow rates when the leading edge is damaged, reducing the stable flow range. Where the inlet relative flow is supersonic, the flow undergoes a supersonic expansion around the leading edge, creating a supersonic flow patch terminated by a shock on the suction surface. Rotating stall is triggered by growth of this separation, which is insensitive to leading edge shape. This creates a marked difference in sensitivity to damage at low- and high-speed operating points.


Author(s):  
Victorita Radulescu

To improve the airfoils performances placed in supersonic flow is proposed a method of optimization for their shapes, in order to minimize the effect of the landing vortices. The theoretical modeling starts with the Navier-Stokes equations applied for thin layers, supplemented with additional conditions related to the profile shape. For a proper estimation of efficiency and responses at different flow regime’s conditions, were considered four aerodynamics airfoils, with different shapes and functioning characteristics. Two of them are special shapes of supersonic profiles and the other two deduced by theoretical assessments with an efficient behavior at high Reynolds numbers. The main purpose of this selection was to identify the essential aspects needed to be considered in numerical modeling of the airfoil’s wing shapes, as to assure an optimization of their behavior for different flow conditions. In the supersonic flow, the cross-sections of the wings are thin profiles, mainly symmetric, as to reduce the drag coefficient and to maximize, as possible, the lift coefficient. A supplementary method for the shape calculation of the aerodynamic profiles with small curvature, based on the Fredholm integral equation of the second kind, with a good behavior in the supersonic flow, is presented. Some aspects referring to unsteady flows and air compressibility are considered, as to simulate as much as possible the real, natural conditions. All profiles were tested, firstly, into a subsonic wind tunnel at incidences between 00 – 40 for different values of wind velocity, and secondly, into a supersonic wind tunnel, at the same incidences. The objective was to better understand and analyze the main factors, which influence the aerodynamic of shapes with curvature, and to assure an optimization of their behavior. The purpose of testing these profiles was to estimate a solution to improve the main characteristics, especially into the trailing and leading edges zones. There were also considered the effects of the attack angle, the influence of the wind velocity, air viscosity, and the shape’s curvature, on the vortices development. The obtained results allow a better functioning in supersonic flow regime, by eliminating the adverse pressure gradient and the boundary layer separation, assuring an optimum behavior especially into the leading edge zone.


Author(s):  
Onur Tuncer

Combustion phenomena in a ramjet combustor with cavity flame-holder is studied numerically. Combustor follows a constant area isolator and comprises of hydrogen fuel injected sonically upstream of the cavity. Secondary fuel injection is performed at the cavity backwall. A diverging section follows the cavity to prevent thermal choking. These concepts are also utilized in practice. Calculations were performed for an entrance Mach number of 1.4. Stagnation temperature is 702 K, corresponding to a flight Mach number of 3.3 at an altitude of 12.5 km. Detailed chemical kinetics are taken into account with a reaction mechanism comprising of 9 species and 25 reaction steps. Turbulence is modeled using Menter’s k–ω shear stress transport model, which is appropriate for high speed internal flows. It is observed that flame anchors at the leading edge of the cavity, and the flame is stabilized in the cavity mode rather than the jet-wake mode. Numerical simulation captures all the essential features of the reacting flowfield.


2018 ◽  
Vol 19 (3) ◽  
pp. 312
Author(s):  
Rahima Takhnouni ◽  
Toufik Zebbiche ◽  
Abderrazak Allali

The aim of this work is to develop a new numerical calculation program to determine the effect of the stagnation temperature on the calculation of the supersonic flow around a pointed airfoils using the equations for oblique shock wave and the Prandtl Meyer expansion, under the model at high temperature, calorically imperfect and thermally perfect gas, lower than the dissociation threshold of the molecules. The specific heat at constant pressure does not remain constant and varies with the temperature. The new model allows making corrections to the perfect gas model designed for low stagnation temperature, low Mach number, low incidence angle and low airfoil thickness. The stagnation temperature is an important parameter in our model. The airfoil should be pointed at the leading edge to allow an attached shock solution to be seen. The airfoil is discretized into several panels on the extrados and the intrados, placed one adjacent to the other. The distribution of the flow on the panel in question gives a compression or an expansion according to the deviation of the flow with respect to the old adjacent panel. The program determines all the aerodynamic characteristics of the flow and in particular the aerodynamic coefficients. The calculation accuracy depends on the number of panels considered on the airfoil. The application is made for high values of stagnation temperature, Mach number and airfoil thickness. A comparison between our high temperature model and the perfect gas model is presented, in order to determine an application limit of the latter. The application is for air.


2021 ◽  
Vol 11 (15) ◽  
pp. 6899
Author(s):  
Abdul Aabid ◽  
Sher Afghan Khan ◽  
Muneer Baig

In high-speed fluid dynamics, base pressure controls find many engineering applications, such as in the automobile and defense industries. Several studies have been reported on flow control with sudden expansion duct. Passive control was found to be more beneficial in the last four decades and is used in devices such as cavities, ribs, aerospikes, etc., but these need additional control mechanics and objects to control the flow. Therefore, in the last two decades, the active control method has been used via a microjet controller at the base region of the suddenly expanded duct of the convergent–divergent (CD) nozzle to control the flow, which was found to be a cost-efficient and energy-saving method. Hence, in this paper, a systemic literature review is conducted to investigate the research gap by reviewing the exhaustive work on the active control of high-speed aerodynamic flows from the nozzle as the major focus. Additionally, a basic idea about the nozzle and its configuration is discussed, and the passive control method for the control of flow, jet and noise are represented in order to investigate the existing contributions in supersonic speed applications. A critical review of the last two decades considering the challenges and limitations in this field is expressed. As a contribution, some major and minor gaps are introduced, and we plot the research trends in this field. As a result, this review can serve as guidance and an opportunity for scholars who want to use an active control approach via microjets for supersonic flow problems.


2011 ◽  
Vol 672 ◽  
pp. 451-476 ◽  
Author(s):  
ERICH SCHÜLEIN ◽  
VICTOR M. TROFIMOV

Large-scale longitudinal vortices in high-speed turbulent separated flows caused by relatively small irregularities at the model leading edges or at the model surfaces are investigated in this paper. Oil-flow visualization and infrared thermography techniques were applied in the wind tunnel tests at Mach numbers 3 and 5 to investigate the nominally 2-D ramp flow at deflection angles of 20°, 25° and 30°. The surface contour anomalies have been artificially simulated by very thin strips (vortex generators) of different shapes and thicknesses attached to the model surface. It is shown that the introduced streamwise vortical disturbances survive over very large downstream distances of the order of 104 vortex-generator heights in turbulent supersonic flows without pressure gradients. It is demonstrated that each vortex pair induced in the reattachment region of the ramp is definitely a child of a vortex pair, which was generated originally, for instance, by the small roughness element near the leading edge. The dependence of the spacing and intensity of the observed longitudinal vortices on the introduced disturbances (thickness and spanwise size of vortex generators) and on the flow parameters (Reynolds numbers, boundary-layer thickness, compression corner angles, etc.) has been shown experimentally.


Sign in / Sign up

Export Citation Format

Share Document