scholarly journals An Unmanned Aerial Vehicle Troubleshooting Mode Selection Method Based on SIF-SVM with Fault Phenomena Text Record

Aerospace ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 347
Author(s):  
Linchao Yang ◽  
Guozhu Jia ◽  
Ke Zheng ◽  
Fajie Wei ◽  
Xing Pan ◽  
...  

At present, the research on fault analysis based on text data focuses on fault diagnosis and classification, but it rarely suggests how to use that information to troubleshoot faults reported in unmanned aerial vehicles (UAVs). Selecting the exact troubleshooting procedure to address faults reported by UAVs generally requires experienced technicians with professional equipment. To improve the efficiency of UAV troubleshooting, this paper proposed a troubleshooting mode selection method based on SIF-SVM (Serial information fusion and support vector machine) using the text feature data from fault description records. First, Word2Vec was used in text data feature extraction. Second, in order to increase the amount of information in the modeling data, we used the information fusion method. SVM was then used to construct the classification model for troubleshooting mode selection. Finally, the effectiveness of the proposed model was verified by using the fault record data of a new fixed-wing UAV.

2018 ◽  
Vol 14 (4) ◽  
pp. 155014771877254
Author(s):  
Bo Li ◽  
Fuwen Pang

To deal with highly time complexity and unstable assessments for conflicting evidences from various navigation factors, we put forward an innovative assessment scheme of navigation risk based on the improved multi-source information fusion techniques. Different from the existing studies, we first deduce the nonlinear support vector machine classification model for the general scenario. The slack variable is adaptively computed based on the Euclidean distance ratio. Considering the unsatisfactory characteristics of the standard Dempster–Shafer evidence theory, the optimal combination rule is derived step by step. What"s more, the lowly dimensional Kalman filter is applied to forecast the navigation risk. Simultaneously, the time complexity of each technique is analyzed. With respect to the vessel navigation risk, the assessment results are provided to indicate the reliability and efficiency of the proposed scheme.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 301 ◽  
Author(s):  
Jie Cao ◽  
Da Wang ◽  
Zhaoyang Qu ◽  
Hongyu Sun ◽  
Bin Li ◽  
...  

Network traffic classification based on machine learning is an important branch of pattern recognition in computer science. It is a key technology for dynamic intelligent network management and enhanced network controllability. However, the traffic classification methods still facing severe challenges: The optimal set of features is difficult to determine. The classification method is highly dependent on the effective characteristic combination. Meanwhile, it is also important to balance the experience risk and generalization ability of the classifier. In this paper, an improved network traffic classification model based on a support vector machine is proposed. First, a filter-wrapper hybrid feature selection method is proposed to solve the false deletion of combined features caused by a traditional feature selection method. Second, to balance the empirical risk and generalization ability of support vector machine (SVM) traffic classification model, an improved parameter optimization algorithm is proposed. The algorithm can dynamically adjust the quadratic search area, reduce the density of quadratic mesh generation, improve the search efficiency of the algorithm, and prevent the over-fitting while optimizing the parameters. The experiments show that the improved traffic classification model achieves higher classification accuracy, lower dimension and shorter elapsed time and performs significantly better than traditional SVM and the other three typical supervised ML algorithms.


Author(s):  
Muhammad Zulqarnain ◽  
Rozaida Ghazali ◽  
Yana Mazwin Mohmad Hassim ◽  
Muhammad Rehan

As the amount of unstructured text data that humanity produce largely and a lot of texts are grows on the Internet, so the one of the intelligent technique is require processing it and extracting different types of knowledge from it. Gated recurrent unit (GRU) and support vector machine (SVM) have been successfully used to Natural Language Processing (NLP) systems with comparative, remarkable results. GRU networks perform well in sequential learning tasks and overcome the issues of “vanishing and explosion of gradients in standard recurrent neural networks (RNNs) when captureing long-term dependencies. In this paper, we proposed a text classification model based on improved approaches to this norm by presenting a linear support vector machine (SVM) as the replacement of Softmax in the final output layer of a GRU model. Furthermore, the cross-entropy function shall be replaced with a margin-based function. Empirical results present that the proposed GRU-SVM model achieved comparatively better results than the baseline approaches BLSTM-C, DABN.


2020 ◽  
Vol 12 (1) ◽  
pp. 113 ◽  
Author(s):  
Andrew Hennessy ◽  
Kenneth Clarke ◽  
Megan Lewis

Hyperspectral sensing, measuring reflectance over visible to shortwave infrared wavelengths, has enabled the classification and mapping of vegetation at a range of taxonomic scales, often down to the species level. Classification with hyperspectral measurements, acquired by narrow band spectroradiometers or imaging sensors, has generally required some form of spectral feature selection to reduce the dimensionality of the data to a level suitable for the construction of a classification model. Despite the large number of hyperspectral plant classification studies, an in-depth review of feature selection methods and resultant waveband selections has not yet been performed. Here, we present a review of the last 22 years of hyperspectral vegetation classification literature that evaluates the overall waveband selection frequency, waveband selection frequency variation by taxonomic, structural, or functional group, and the influence of feature selection choice by comparing such methods as stepwise discriminant analysis (SDA), support vector machines (SVM), and random forests (RF). This review determined that all characteristics of hyperspectral plant studies influence the wavebands selected for classification. This includes the taxonomic, structural, and functional groups of the target samples, the methods, and scale at which hyperspectral measurements are recorded, as well as the feature selection method used. Furthermore, these influences do not appear to be consistent. Moreover, the considerable variability in waveband selection caused by the feature selectors effectively masks the analysis of any variability between studies related to plant groupings. Additionally, questions are raised about the suitability of SDA as a feature selection method, with it producing waveband selections at odds with the other feature selectors. Caution is recommended when choosing a feature selector for hyperspectral plant classification: We recommend multiple methods being performed. The resultant sets of selected spectral features can either be evaluated individually by multiple classification models or combined as an ensemble for evaluation by a single classifier. Additionally, we suggest caution when relying upon waveband recommendations from the literature to guide waveband selections or classifications for new plant discrimination applications, as such recommendations appear to be weakly generalizable between studies.


2021 ◽  
pp. 1-11
Author(s):  
Ya Gao

The network provides a convenient mechanism for publishing and obtaining documents, and has now become a gathering place for all kinds of information. In the network, the amount of information increases exponentially, and how to dig useful patterns or knowledge from the massive network culture has become a hot topic for scholars. In data mining, in order to enable readers to quickly obtain the content of interest, research text classification, and automatically classify text data according to a certain classification model. Internet cultural text data has the characteristics of unstructured, subjective, high-dimensional, etc., which makes it difficult for text mining algorithms to extract effective and easy-to-understand classification rules, and the computational complexity is too high. This paper proposes a feature selection method based on robust features, using sample deviation and variance as the criteria for feature attributes to rank the importance of feature attributes, and select the best feature attribute subset. The experimental results show that the classification accuracy of the feature selection method based on sample deviation and variance proposed in this paper is higher than the traditional word frequency as the feature selection method, which proves the feasibility and superiority of the feature selection method proposed in this paper.


In Sindhi Language, handwritten text feature extraction is such a challenging task for all scholars, because different people write in different styles or manners, to analyze each text is such a complex problem. Feature extraction of text segmentation, classifying each character and labelling for training data to recognize text for different handwritings and testing for analyzing features of providing handwritten text data .In this research, SVM (support vector machine) is used for analyzing and tokenizing each character or word of Sindhi Language text and transform into suitable information with efficiency & accuracy. The research is not only useful for improving the knowledge of Sindhi Handwritten Text Recognition but it can be beneficial for other recognition systems


Healthcare ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1353
Author(s):  
Jingfang Liu ◽  
Shuangjinhua Lu ◽  
Caiying Lu

(1) Background: The COVID-19 pandemic is globally rampant, and it is the common goal of all countries to eliminate hesitation in taking the COVID-19 vaccine and achieve herd immunity as soon as possible. However, people are generally more hesitant about the COVID-19 vaccine than about other conventional vaccines, and exploring the specific reasons for hesitation with the COVID-19 vaccine is crucial. (2) Methods: this paper selected text data from a social platform to conduct qualitative analysis of the text to structure COVID-19 vaccine hesitancy reasons, and then conducted semiautomatic quantitative content analysis of the text through a supervised machine-learning method to classify them. (3) Results: on the basis of a large number of studies and news reports on vaccine hesitancy, we structured 12 types of the COVID-19 vaccine hesitancy reasons. Then, in the experiment, we conducted comparative analysis of three classifiers: support vector machine (SVM), logistic regression (LR), and naive Bayes classifier (NBC). Results show that the SVM classification model with TF-IDF and SMOTE had the best performance. (4) Conclusions: our study structured 12 types of COVID-19 vaccine hesitancy reasons through qualitative analysis, filling in the gaps of previous studies. At the same time, this work provides public health institutions with a monitoring tool to support efforts to mitigate and eliminate COVID-19 vaccine hesitancy.


2020 ◽  
Vol 4 (2) ◽  
pp. 329-335
Author(s):  
Rusydi Umar ◽  
Imam Riadi ◽  
Purwono

The failure of most startups in Indonesia is caused by team performance that is not solid and competent. Programmers are an integral profession in a startup team. The development of social media can be used as a strategic tool for recruiting the best programmer candidates in a company. This strategic tool is in the form of an automatic classification system of social media posting from prospective programmers. The classification results are expected to be able to predict the performance patterns of each candidate with a predicate of good or bad performance. The classification method with the best accuracy needs to be chosen in order to get an effective strategic tool so that a comparison of several methods is needed. This study compares classification methods including the Support Vector Machines (SVM) algorithm, Random Forest (RF) and Stochastic Gradient Descent (SGD). The classification results show the percentage of accuracy with k = 10 cross validation for the SVM algorithm reaches 81.3%, RF at 74.4%, and SGD at 80.1% so that the SVM method is chosen as a model of programmer performance classification on social media activities.


2020 ◽  
Vol 23 (4) ◽  
pp. 274-284 ◽  
Author(s):  
Jingang Che ◽  
Lei Chen ◽  
Zi-Han Guo ◽  
Shuaiqun Wang ◽  
Aorigele

Background: Identification of drug-target interaction is essential in drug discovery. It is beneficial to predict unexpected therapeutic or adverse side effects of drugs. To date, several computational methods have been proposed to predict drug-target interactions because they are prompt and low-cost compared with traditional wet experiments. Methods: In this study, we investigated this problem in a different way. According to KEGG, drugs were classified into several groups based on their target proteins. A multi-label classification model was presented to assign drugs into correct target groups. To make full use of the known drug properties, five networks were constructed, each of which represented drug associations in one property. A powerful network embedding method, Mashup, was adopted to extract drug features from above-mentioned networks, based on which several machine learning algorithms, including RAndom k-labELsets (RAKEL) algorithm, Label Powerset (LP) algorithm and Support Vector Machine (SVM), were used to build the classification model. Results and Conclusion: Tenfold cross-validation yielded the accuracy of 0.839, exact match of 0.816 and hamming loss of 0.037, indicating good performance of the model. The contribution of each network was also analyzed. Furthermore, the network model with multiple networks was found to be superior to the one with a single network and classic model, indicating the superiority of the proposed model.


Sign in / Sign up

Export Citation Format

Share Document