scholarly journals Effect of Ethylene-Insensitive Mutation etr2b on Postharvest Chilling Injury in Zucchini Fruit

Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 532
Author(s):  
Alicia García ◽  
Encarnación Aguado ◽  
Gustavo Cebrián ◽  
Jessica Iglesias ◽  
Jonathan Romero ◽  
...  

Zucchini is a vegetable fruit that is very susceptible to postharvest chilling injury, and fruit ethylene production is correlated with chilling injury sensitivity, such that the more tolerant the cultivar, the lower is its ethylene production. It is expected that zucchini fruit with reduced sensitivity to ethylene would have a higher chilling injury tolerance. In this study, we compared the postharvest fruit quality of wild type and ethylene-insensitive mutant etr2b, in which a mutation was identified in the coding region of the ethylene receptor gene CpETR2B. Flowers from homozygous WT (wt/wt), mutant plants in homozygous (etr2b/etr2b) and heterozygous (wt/etr2b) were hand-pollinated, and all fruits were harvested with the same length, at about 8 days after pollination. After harvesting, fruit of each genotype was randomly divided in 3 batches of 12 fruits each (four replications with three fruits each), and then stored at 4 °C and 95% RH. At 0, 7, and 14 days after cold storage, each batch was used to assess ethylene production, respiration rate, weight and firmness loss, chilling injury, and oxidative stress metabolites. The results showed a lower chilling injury associated with lower cold-induced ethylene production in the mutant fruit, in comparison with the WT fruit. These data demonstrated that the ethylene-insensitive etr2b mutant fruit was more tolerant to chilling injury, confirming that basal ethylene in the still undamaged fruit could function as a modulator of post-harvest chilling injury. Moreover, the higher chilling tolerance of the etr2b mutant fruit was not associated with MDA content, but was concomitant with a reduction in the accumulation of hydrogen peroxide in the refrigerated mutant fruit.

PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0133058 ◽  
Author(s):  
Zoraida Megías ◽  
Cecilia Martínez ◽  
Susana Manzano ◽  
Alicia García ◽  
María del Mar Rebolloso-Fuentes ◽  
...  

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1140c-1140
Author(s):  
Dangyang Ke ◽  
Adel A. Kader

Fruits of peach (Prunus persica L., cv. `Fairtime') and plum (Prunus domestica L., cv. `Angeleno') were kept in air and in 0.25% or 0.02% O2 at 0, 5, or 10°C for 3 to 40 days to study the effects of temperatures and insecticidal low O2 atmospheres on their physiological responses and quality attributes. Exposure to low O2 atmospheres reduced respiration and ethylene production rates of the stone fruits. The low O2 treatments retarded color change and flesh softening of plums and maintained acidity of peaches. Exposure to the low O2 atmospheres also delayed incidence and reduced severity of internal breakdown (chilling injury) and decay of the peaches at 5°C and, therefore, maintained both external and internal appearance qualities of the fruits longer than those kept in air. The most important limiting factor for fruit tolerance to insecticidal low O2 atmospheres was development of alcoholic off-flavor which was associated with accumulation of ethanol and acetaldehyde in the fruits. The peaches and plums could tolerate exposures to the low O2 atmospheres for 9 to 40 days, depending on the temperature and O2 level used. These results suggest that stone fruits are quite tolerant to insecticidal low O2 atmospheres.


2012 ◽  
Vol 554-556 ◽  
pp. 1076-1080
Author(s):  
Shi Jie Yan ◽  
Li Ya Liang ◽  
Zhao Chun Ma ◽  
Ru Fu Wang

Effects of a combination of 1-MCP, CaCl2 treatment and slow cooling on postharvest physiology of ‘Zhonghuashoutao’ peach were investigated. Respiration rate, ethylene production, firmness, juice contents and percentage of good fruit were studied to evaluate the quality of peach. The results showed that 1-MCP, CaCl2 treatment reduced the amount of respiration rate and ethylene production, delayed the appearence of ethylene peak, prolonged softening, restrained the chilling injury of ‘Zhonghuashoutao’ peach after harvest. Slow cooling method had better effect and could delay the incidence of physiological disorder and maintained good quality during storage.


2021 ◽  
Author(s):  
Priscila Mantovani Nocetti ◽  
Adriano Alberti ◽  
Viviane Freiberger ◽  
Letícia Ventura ◽  
Leoberto Ricardo Grigollo ◽  
...  

Abstract Duchenne muscular dystrophy (DMD) is a genetic disease, which is associated to progressive skeletal muscle degeneration. In humans, DMD has early onset, causes developmental delays, and is a devastating disease that drastically diminishes the quality of life of the young individuals affected. The objective of this study was to evaluate the effects of a swimming protocol on memory and oxidative stress in an animal model of Duchenne muscular dystrophy. Male mdx and wild type mice within 28 days were used in this study. The animals were trained in a stepped swimming protocol for four consecutive weeks. It was verified that swimming was able to reduce significantly the levels of lipid peroxidation and protein carbonilation in gastrocnemius and hippocampus and striatum in exercised animals. Swimming has also prevented lipid peroxidation in diaphragm. Besides, this swimming protocol was able to increase free thiols in gastrocnemius, diaphragm and in all central nervous system structures. These results showed that a protocol of swimming as an aerobic exercise of low intensity, for four weeks, prevented aversive memory and habituation in mdx mice.


HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1359-1362 ◽  
Author(s):  
Jiwon Jeong ◽  
Jeffrey K. Brecht ◽  
Donald J. Huber ◽  
Steven A. Sargent

A study was conducted to determine the effect of 1-methylcyclopropene (1-MCP) on textural changes in fresh-cut tomato (Lycopersicon esculentum, Mill.) slices during storage at 5 °C. The relationship between fruit developmental stage and tissue watersoaking development was also determined. Fresh-cut tomato slices prepared from light-red fruit that had been exposed to 1-MCP (1 μL·L-1 for 24 h at 5 °C) retained significantly higher pericarp firmness during storage at 5 °C for 10 d than slices from nontreated fruit or slices stored at 10 or 15 °C and they also had a significantly higher ethylene production maximum. 1-MCP (1 or 10 μL·L-1 for 24 h at 5 °C) had no affect on the firmness of fresh-cut, red tomato slices at 5 °C or on slices prepared from 5 °C-stored, intact red tomatoes. Nor did 1-MCP treatment have a significant effect on electrolyte leakage of tomato slices or intact fruit stored at 5 °C. Slices from fruit of the same developmental stage but with higher initial firmness values had less watersoaking development and responded better to 1-MCP treatment during 8 d storage at 5 °C. 1-MCP (1 μL·L-1) was more effective in reducing watersoaking in light red stage tomato slices when applied at 5 °C for 24 h compared with 1-MCP applied at 10 or 15 °C. Watersoaking development was also more rapid in fresh-cut tomato slices as initial fruit ripeness advanced from breaker to red stage. Our results suggest that watersoaking development in fresh-cut tomato slices is an ethylene-mediated symptom of senescence and not a symptom of chilling injury as had previously been proposed.


2016 ◽  
Vol 3 (2) ◽  
pp. 42-48
Author(s):  
V. Balatsky ◽  
I. Bankovska ◽  
A. Saienko

Leptin receptor is one of the components of the system of regulating energy homeostasis of the organism. Leptin receptor gene (LEPR) polymorphism is associated with pig carcass index of the content of intramus- cular fat in its valuable parts, which is particularly important when assessing the quality of their carcasses for processing. Intramuscular fat is associated with meat fl avor characteristics and partly determines its tenderness, juiciness, and other parameters. Aim. To analyze LEPR gene (SNP NM001024587.1, p. 1987 C > T) polymor- phism in populations of various pig breeds and to establish its relationship with the quality of both meat and fat of pigs of Large White breed of Ukrainian breeding. Methods. Genetic-population analysis of nine pig breeds, associative analysis on the search connection of LEPR gene polymorphism with quality of both meat and fat of pigs of Large White breed of Ukrainian breeding. LEPR locus genotyping was performed by High Resolution Melting (HRM). Results. All the studied breeds are characterized by polymorphism of the leptin receptor gene (SNP NM001024587.1, p. 1987 C > T), signifi cant breed specifi city in the distribution of frequencies of alleles was established. Statistically confi rmed effect (p < 0.05) of genotypes LEPR on the content of intramuscular fat, total dry matter and moisture in the meat, as well as the moisture content in the back fat of pigs of Ukrainian Large White breed was revealed. Higher content of intramuscular fat was found in the animals with genotype TT, while a smaller amount of intramuscular fat and more moisture in fat was revealed in heterozygotes. Conclusions. Genetic marker LEPR SNP NM001024587.1, p. 1987 C > T can be used in the marker-assisted selection to predict and improve the performance quality of the meat of pigs of Large White breed of the Ukrainian breeding. These results suggest that porcine leptin receptor gene controls the quality of fat comp- lex – inside muscles and in the dorsal part of the carcass.


Nature ◽  
1984 ◽  
Vol 312 (5996) ◽  
pp. 779-781 ◽  
Author(s):  
Roger Miesfeld ◽  
Sam Okret ◽  
Ann-Charlotte Wikström ◽  
Örjan Wrange ◽  
Jan-Åke Gustafsson ◽  
...  

mSphere ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Dianxiong Zou ◽  
Todd M. Hennessey

ABSTRACT Although many single-cell eukaryotes have served as classical model systems for chemosensory studies for decades, the major emphasis has been on chemoattraction and no chemorepellent receptor gene has been identified in any unicellular eukaryote. This is the first description of a gene that codes for a chemorepellent receptor in any protozoan. Integration of both depolarizing chemorepellent pathways and hyperpolarizing chemoattractant pathways is as important to chemoresponses of motile unicells as excitatory and inhibitory neurotransmitter pathways are to neurons. Therefore, both chemoattractant and chemorepellent pathways should be represented in a useful unicellular model system. Tetrahymena cells provide such a model system because simple behavioral bioassays, gene knockouts, biochemical analysis, and other approaches can be used with these eukaryotic model cells. This work can contribute to the basic understanding of unicellular sensory responses and provide insights into the evolution of chemoreceptors and possible chemorepellent approaches for preventing infections by some pathogenic protozoa. A conditioned supernatant from Tetrahymena thermophila contains a powerful chemorepellent for wild-type cells, and a gene called G37 is required for this response. This is the first genomic identification of a chemorepellent receptor in any eukaryotic unicellular organism. This conditioned supernatant factor (CSF) is small (<1 kDa), and its repellent effect is resistant to boiling, protease treatment, and nuclease digestion. External BAPTA eliminated the CSF response, suggesting that Ca2+ entry is required for the classical avoiding reactions (AR) used for chemorepulsion. A macronuclear G37 gene knockout (G37-KO) mutant is both nonresponsive to the CSF and overresponsive to other repellents such as quinine, lysozyme, GTP, and high potassium concentrations. All of these mutant phenotypes were reversed by overexpression of the wild-type G37 gene in a G37 overexpression mutant. Overexpression of G37 in the wild type caused increased responsiveness to the CSF and underresponsiveness to high K+ concentrations. Behavioral adaptation (by prolonged exposure to the CSF) caused decreases in responsiveness to all of the stimuli used in the wild type and the overexpression mutant but not in the G37-KO mutant. We propose that the constant presence of the CSF causes a decreased basal excitability of the wild type due to chemosensory adaptation through G37 and that all of the G37-KO phenotypes are due to an inability to detect the CSF. Therefore, the G37 protein may be the CSF receptor. The physiological role of these G37-mediated responses may be to both moderate basal excitability and detect the CSF as an indicator of high cell density growth. IMPORTANCE Although many single-cell eukaryotes have served as classical model systems for chemosensory studies for decades, the major emphasis has been on chemoattraction and no chemorepellent receptor gene has been identified in any unicellular eukaryote. This is the first description of a gene that codes for a chemorepellent receptor in any protozoan. Integration of both depolarizing chemorepellent pathways and hyperpolarizing chemoattractant pathways is as important to chemoresponses of motile unicells as excitatory and inhibitory neurotransmitter pathways are to neurons. Therefore, both chemoattractant and chemorepellent pathways should be represented in a useful unicellular model system. Tetrahymena cells provide such a model system because simple behavioral bioassays, gene knockouts, biochemical analysis, and other approaches can be used with these eukaryotic model cells. This work can contribute to the basic understanding of unicellular sensory responses and provide insights into the evolution of chemoreceptors and possible chemorepellent approaches for preventing infections by some pathogenic protozoa.


Sign in / Sign up

Export Citation Format

Share Document