scholarly journals Behavioral Effects of a Chemorepellent Receptor Knockout Mutation in Tetrahymena thermophila

mSphere ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Dianxiong Zou ◽  
Todd M. Hennessey

ABSTRACT Although many single-cell eukaryotes have served as classical model systems for chemosensory studies for decades, the major emphasis has been on chemoattraction and no chemorepellent receptor gene has been identified in any unicellular eukaryote. This is the first description of a gene that codes for a chemorepellent receptor in any protozoan. Integration of both depolarizing chemorepellent pathways and hyperpolarizing chemoattractant pathways is as important to chemoresponses of motile unicells as excitatory and inhibitory neurotransmitter pathways are to neurons. Therefore, both chemoattractant and chemorepellent pathways should be represented in a useful unicellular model system. Tetrahymena cells provide such a model system because simple behavioral bioassays, gene knockouts, biochemical analysis, and other approaches can be used with these eukaryotic model cells. This work can contribute to the basic understanding of unicellular sensory responses and provide insights into the evolution of chemoreceptors and possible chemorepellent approaches for preventing infections by some pathogenic protozoa. A conditioned supernatant from Tetrahymena thermophila contains a powerful chemorepellent for wild-type cells, and a gene called G37 is required for this response. This is the first genomic identification of a chemorepellent receptor in any eukaryotic unicellular organism. This conditioned supernatant factor (CSF) is small (<1 kDa), and its repellent effect is resistant to boiling, protease treatment, and nuclease digestion. External BAPTA eliminated the CSF response, suggesting that Ca2+ entry is required for the classical avoiding reactions (AR) used for chemorepulsion. A macronuclear G37 gene knockout (G37-KO) mutant is both nonresponsive to the CSF and overresponsive to other repellents such as quinine, lysozyme, GTP, and high potassium concentrations. All of these mutant phenotypes were reversed by overexpression of the wild-type G37 gene in a G37 overexpression mutant. Overexpression of G37 in the wild type caused increased responsiveness to the CSF and underresponsiveness to high K+ concentrations. Behavioral adaptation (by prolonged exposure to the CSF) caused decreases in responsiveness to all of the stimuli used in the wild type and the overexpression mutant but not in the G37-KO mutant. We propose that the constant presence of the CSF causes a decreased basal excitability of the wild type due to chemosensory adaptation through G37 and that all of the G37-KO phenotypes are due to an inability to detect the CSF. Therefore, the G37 protein may be the CSF receptor. The physiological role of these G37-mediated responses may be to both moderate basal excitability and detect the CSF as an indicator of high cell density growth. IMPORTANCE Although many single-cell eukaryotes have served as classical model systems for chemosensory studies for decades, the major emphasis has been on chemoattraction and no chemorepellent receptor gene has been identified in any unicellular eukaryote. This is the first description of a gene that codes for a chemorepellent receptor in any protozoan. Integration of both depolarizing chemorepellent pathways and hyperpolarizing chemoattractant pathways is as important to chemoresponses of motile unicells as excitatory and inhibitory neurotransmitter pathways are to neurons. Therefore, both chemoattractant and chemorepellent pathways should be represented in a useful unicellular model system. Tetrahymena cells provide such a model system because simple behavioral bioassays, gene knockouts, biochemical analysis, and other approaches can be used with these eukaryotic model cells. This work can contribute to the basic understanding of unicellular sensory responses and provide insights into the evolution of chemoreceptors and possible chemorepellent approaches for preventing infections by some pathogenic protozoa.

Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1836 ◽  
Author(s):  
Hiroki Ishiguro ◽  
Yasue Horiuchi ◽  
Koichi Tabata ◽  
Qing-Rong Liu ◽  
Tadao Arinami ◽  
...  

CB2 cannabinoid receptor (CB2R) gene is associated with depression. We investigated the gene-environment interaction between CB2R function and diverse stressors. First, anxiety-like behavior during chronic-mild-stress (CMS) was evaluated in C57BL/6JJmsSlc mice following treatment with CB2R agonist JWH015 or inverse-agonist AM630. Second, locomotor activity and anxiety-like behavior were measured following exposure to an immune poly I:C stressor. Gene expressions of HPA axis related molecules, Fkbp5, Nr3c1 and Crf and pro-inflammatory cytokine Il-1b, as well as Bdnf as a key neurotrophin that supports neuron health, function, and synaptic plasticity, were determined in hippocampus of Cnr2 knockout mice, as indicators of stressful environment. CMS-induced anxiety-like behavior was enhanced by AM630 and reduced by JWH015 and fluvoxamine. Poly I:C reduced locomotor activity and increased anxiety-like behavior, and these effects were pronounced in the heterozygote than in the wild type mice. Fkbp5 and Nr3c1 expression were lower in the Cnr2 heterozygotes than in the wild type mice with Poly I:C treatment. These findings indicate that interaction between CB2R gene and stressors increases the risk of depression-like behaviors that may be linked with neuro-immune crosstalk. Further studies in human subjects are necessary to determine the role of CB2R and environmental interaction in the development of depression.


2013 ◽  
Vol 27 (1) ◽  
pp. 135-149 ◽  
Author(s):  
Kalina Duszka ◽  
Juliane G. Bogner-Strauss ◽  
Hubert Hackl ◽  
Dietmar Rieder ◽  
Claudia Neuhold ◽  
...  

Expression of the nuclear receptor gene, Nur77 (Nr4a1), is induced in white adipose tissue (WAT) in response to β-adrenergic stimulation and fasting. Recently, Nur77 has been shown to play a gene regulatory role in the fasting response of several other major metabolic tissues. Here we investigated the effects of Nur77 on the WAT transcriptome after fasting. For this purpose, we performed gene expression profiling of WAT from wild-type and Nur77−/− mice submitted to prolonged fasting. Results revealed Nur77-dependent changes in expression profiles of 135 transcripts, many involved in insulin signaling, lipid and fatty acid metabolism, and glucose metabolism. Network analysis identified the deregulated genes Pparγ2 and Nur77 as central hubs and closely connected in the network, indicating overlapping biological function. We further assayed the expression level of Pparγ2 in a bigger cohort of fasted mice and found a significant Nur77-dependent down-regulation of Pparγ2 in the wild-type mice (P = 0.021, n = 10). Consistently, the expression of several known Pparγ2 targets, found among the Nur77-regulated genes (i.e. G0s2, Grp81, Fabp4, and Adipoq), were up-regulated in WAT of fasted Nur77−/− mice. Finally, we show with chromatin immunoprecipitation and luciferase assays that the Pparγ2 promoter is a direct target of Nurr-related 77-kDa protein (Nur77)-dependent repressive regulation and that the N-terminal domain of Nur77 is required for this regulation. In conclusion, we present data implicating Nur77 as a mediator of fasting-induced Pparγ2 regulation in WAT.


2012 ◽  
Vol 108 (2) ◽  
pp. 684-696 ◽  
Author(s):  
Zepeng Yao ◽  
Ann Marie Macara ◽  
Katherine R. Lelito ◽  
Tamara Y. Minosyan ◽  
Orie T. Shafer

Drosophila melanogaster is a valuable model system for the neural basis of complex behavior, but an inability to routinely interrogate physiologic connections within central neural networks of the fly brain remains a fundamental barrier to progress in the field. To address this problem, we have introduced a simple method of measuring functional connectivity based on the independent expression of the mammalian P2X2 purinoreceptor and genetically encoded Ca2+ and cAMP sensors within separate genetically defined subsets of neurons in the adult brain. We show that such independent expression is capable of specifically rendering defined sets of neurons excitable by pulses of bath-applied ATP in a manner compatible with high-resolution Ca2+ and cAMP imaging in putative follower neurons. Furthermore, we establish that this approach is sufficiently sensitive for the detection of excitatory and modulatory connections deep within larval and adult brains. This technically facile approach can now be used in wild-type and mutant genetic backgrounds to address functional connectivity within neuronal networks governing a wide range of complex behaviors in the fly. Furthermore, the effectiveness of this approach in the fly brain suggests that similar methods using appropriate heterologous receptors might be adopted for other widely used model systems.


Author(s):  
Thecan Caesar-Ton That ◽  
Lynn Epstein

Nectria haematococca mating population I (anamorph, Fusarium solani) macroconidia attach to its host (squash) and non-host surfaces prior to germ tube emergence. The macroconidia become adhesive after a brief period of protein synthesis. Recently, Hickman et al. (1989) isolated N. haematococca adhesion-reduced mutants. Using freeze substitution, we compared the development of the macroconidial wall in the wild type in comparison to one of the mutants, LEI.Macroconidia were harvested at 1C, washed by centrifugation, resuspended in a dilute zucchini fruit extract and incubated from 0 - 5 h. During the incubation period, wild type macroconidia attached to uncoated dialysis tubing. Mutant macroconidia did not attach and were collected on poly-L-lysine coated dialysis tubing just prior to freezing. Conidia on the tubing were frozen in liquid propane at 191 - 193C, substituted in acetone with 2% OsO4 and 0.05% uranyl acetate, washed with acetone, and flat-embedded in Epon-Araldite. Using phase contrast microscopy at 1000X, cells without freeze damage were selected, remounted, sectioned and post-stained sequentially with 1% Ba(MnO4)2 2% uranyl acetate and Reynold’s lead citrate. At least 30 cells/treatment were examined.


2007 ◽  
Vol 28 (3) ◽  
pp. 897-906 ◽  
Author(s):  
Thomas J. Pohl ◽  
Jac A. Nickoloff

ABSTRACT Homologous recombination (HR) is critical for DNA double-strand break (DSB) repair and genome stabilization. In yeast, HR is catalyzed by the Rad51 strand transferase and its “mediators,” including the Rad52 single-strand DNA-annealing protein, two Rad51 paralogs (Rad55 and Rad57), and Rad54. A Rad51 homolog, Dmc1, is important for meiotic HR. In wild-type cells, most DSB repair results in gene conversion, a conservative HR outcome. Because Rad51 plays a central role in the homology search and strand invasion steps, DSBs either are not repaired or are repaired by nonconservative single-strand annealing or break-induced replication mechanisms in rad51Δ mutants. Although DSB repair by gene conversion in the absence of Rad51 has been reported for ectopic HR events (e.g., inverted repeats or between plasmids), Rad51 has been thought to be essential for DSB repair by conservative interchromosomal (allelic) gene conversion. Here, we demonstrate that DSBs stimulate gene conversion between homologous chromosomes (allelic conversion) by >30-fold in a rad51Δ mutant. We show that Rad51-independent allelic conversion and break-induced replication occur independently of Rad55, Rad57, and Dmc1 but require Rad52. Unlike DSB-induced events, spontaneous allelic conversion was detected in both rad51Δ and rad52Δ mutants, but not in a rad51Δ rad52Δ double mutant. The frequencies of crossovers associated with DSB-induced gene conversion were similar in the wild type and the rad51Δ mutant, but discontinuous conversion tracts were fivefold more frequent and tract lengths were more widely distributed in the rad51Δ mutant, indicating that heteroduplex DNA has an altered structure, or is processed differently, in the absence of Rad51.


Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 383-391 ◽  
Author(s):  
Yasumasa Tsukamoto ◽  
Jun-ichi Kato ◽  
Hideo Ikeda

Abstract To examine the mechanism of illegitimate recombination in Saccharomyces cerevisiae, we have developed a plasmid system for quantitative analysis of deletion formation. A can1 cyh2 cell carrying two negative selection markers, the CAN1 and CYH2 genes, on a YCp plasmid is sensitive to canavanine and cycloheximide, but the cell becomes resistant to both drugs when the plasmid has a deletion over the CAN1 and CYH2 genes. Structural analysis of the recombinant plasmids obtained from the resistant cells showed that the plasmids had deletions at various sites of the CAN1-CYH2 region and there were only short regions of homology (1-5 bp) at the recombination junctions. The results indicated that the deletion detected in this system were formed by illegitimate recombination. Study on the effect of several rad mutations showed that the recombination rate was reduced by 30-, 10-, 10-, and 10-fold in the rad52, rad50, mre11, and xrs2 mutants, respectively, while in the rud51, 54, 55, and 57 mutants, the rate was comparable to that in the wild-type strain. The rad52 mutation did not affect length of homology at junction sites of illegitimate recombination.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 618
Author(s):  
Yue Jin ◽  
Shihao Li ◽  
Yang Yu ◽  
Chengsong Zhang ◽  
Xiaojun Zhang ◽  
...  

A mutant of the ridgetail white prawn, which exhibited rare orange-red body color with a higher level of free astaxanthin (ASTX) concentration than that in the wild-type prawn, was obtained in our lab. In order to understand the underlying mechanism for the existence of a high level of free astaxanthin, transcriptome analysis was performed to identify the differentially expressed genes (DEGs) between the mutant and wild-type prawns. A total of 78,224 unigenes were obtained, and 1863 were identified as DEGs, in which 902 unigenes showed higher expression levels, while 961 unigenes presented lower expression levels in the mutant in comparison with the wild-type prawns. Based on Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes analysis, as well as further investigation of annotated DEGs, we found that the biological processes related to astaxanthin binding, transport, and metabolism presented significant differences between the mutant and the wild-type prawns. Some genes related to these processes, including crustacyanin, apolipoprotein D (ApoD), cathepsin, and cuticle proteins, were identified as DEGs between the two types of prawns. These data may provide important information for us to understand the molecular mechanism of the existence of a high level of free astaxanthin in the prawn.


Genetics ◽  
1998 ◽  
Vol 149 (2) ◽  
pp. 565-577
Author(s):  
Daniel B Szymanski ◽  
Daniel A Klis ◽  
John C Larkin ◽  
M David Marks

Abstract In Arabidopsis, the timing and spatial arrangement of trichome initiation is tightly regulated and requires the activity of the GLABROUS1 (GL1) gene. The COTYLEDON TRICHOME 1 (COT1) gene affects trichome initiation during late stages of leaf development and is described in this article. In the wild-type background, cot1 has no observable effect on trichome initiation. GL1 overexpression in wild-type plants leads to a modest number of ectopic trichomes and to a decrease in trichome number on the adaxial leaf surface. The cot1 mutation enhances GL1-overexpression-dependent ectopic trichome formation and also induces increased leaf trichome initiation. The expressivity of the cot1 phenotype is sensitive to cot1 and 35S::GL1 gene dosage, and the most severe phenotypes are observed when cot1 and 35S::GL1 are homozygous. The COT1 locus is located on chromosome 2 15.3 cM north of er. Analysis of the interaction between cot1, try, and 35S::GL1 suggests that COT1 is part of a complex signal transduction pathway that regulates GL1-dependent adoption of the trichome cell fate.


2020 ◽  
Vol 22 (1) ◽  
pp. 152
Author(s):  
Dorota Dabrowska ◽  
Justyna Mozejko-Ciesielska ◽  
Tomasz Pokój ◽  
Slawomir Ciesielski

Pseudomonas putida’s versatility and metabolic flexibility make it an ideal biotechnological platform for producing valuable chemicals, such as medium-chain-length polyhydroxyalkanoates (mcl-PHAs), which are considered the next generation bioplastics. This bacterium responds to environmental stimuli by rearranging its metabolism to improve its fitness and increase its chances of survival in harsh environments. Mcl-PHAs play an important role in central metabolism, serving as a reservoir of carbon and energy. Due to the complexity of mcl-PHAs’ metabolism, the manner in which P. putida changes its transcriptome to favor mcl-PHA synthesis in response to environmental stimuli remains unclear. Therefore, our objective was to investigate how the P. putida KT2440 wild type and mutants adjust their transcriptomes to synthesize mcl-PHAs in response to nitrogen limitation when supplied with sodium gluconate as an external carbon source. We found that, under nitrogen limitation, mcl-PHA accumulation is significantly lower in the mutant deficient in the stringent response than in the wild type or the rpoN mutant. Transcriptome analysis revealed that, under N-limiting conditions, 24 genes were downregulated and 21 were upregulated that were common to all three strains. Additionally, potential regulators of these genes were identified: the global anaerobic regulator (Anr, consisting of FnrA, Fnrb, and FnrC), NorR, NasT, the sigma54-dependent transcriptional regulator, and the dual component NtrB/NtrC regulator all appear to play important roles in transcriptome rearrangement under N-limiting conditions. The role of these regulators in mcl-PHA synthesis is discussed.


2021 ◽  
Vol 22 (8) ◽  
pp. 4014
Author(s):  
Lin-Feng Wang ◽  
Ting-Ting Li ◽  
Yu Zhang ◽  
Jia-Xing Guo ◽  
Kai-Kai Lu ◽  
...  

Osmotic stress severely inhibits plant growth and development, causing huge loss of crop quality and quantity worldwide. Melatonin is an important signaling molecule that generally confers plant increased tolerance to various environmental stresses, however, whether and how melatonin participates in plant osmotic stress response remain elusive. Here, we report that melatonin enhances plant osmotic stress tolerance through increasing ROS-scavenging ability, and melatonin receptor CAND2 plays a key role in melatonin-mediated plant response to osmotic stress. Upon osmotic stress treatment, the expression of melatonin biosynthetic genes including SNAT1, COMT1, and ASMT1 and the accumulation of melatonin are increased in the wild-type plants. The snat1 mutant is defective in osmotic stress-induced melatonin accumulation and thus sensitive to osmotic stress, while exogenous melatonin enhances the tolerance of the wild-type plant and rescues the sensitivity of the snat1 mutant to osmotic stress by upregulating the expression and activity of catalase and superoxide dismutase to repress H2O2 accumulation. Further study showed that the melatonin receptor mutant cand2 exhibits reduced osmotic stress tolerance with increased ROS accumulation, but exogenous melatonin cannot revert its osmotic stress phenotype. Together, our study reveals that CADN2 functions necessarily in melatonin-conferred osmotic stress tolerance by activating ROS-scavenging ability in Arabidopsis.


Sign in / Sign up

Export Citation Format

Share Document