scholarly journals Experimental Evaluation of Rootstock Clamping Device for Inclined Inserted Grafting of Melons

Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 736
Author(s):  
Kang Wu ◽  
Jianzhong Lou ◽  
Chen Li ◽  
Jianping Li

A grafting machine is a kind of machine that can quickly graft scion to rootstock instead of manual grafting. Currently, an inclined inserted grafting machine uses the mechanical clamping method, which can easily damage the rootstock seedlings due to its high stiffness, thus, reducing the success rate of grafting. This study proposed an effective, flexible clamping device for grafting. The suction hole diameter (HD), the negative pressure (NP), and the surface inclination angle (IA) of the clamping device were studied via a single factor experiment to obtain optimal parameter ranges. Optimal HD, NP, and IA were 2–3 mm, 4–8 kPa, and 10–20°, respectively. The orthogonal experiment results showed that the optimal parameter combination for maximum holding success rate was HD, 2.5 mm; NP, 6 kPa; and IA, 10°. The experimental verification was carried out using the optimal parameter combination, with a holding success rate of 98.3% and no damage. This study provides a reference for the optimal design of an inclined inserted grafting machine.

2019 ◽  
Vol 13 (2) ◽  
pp. 181-188
Author(s):  
Meng Liu ◽  
Guohe Li ◽  
Xueli Zhao ◽  
Xiaole Qi ◽  
Shanshan Zhao

Background: Finite element simulation has become an important method for the mechanism research of metal machining in recent years. Objective: To study the cutting mechanism of hardened 45 steel (45HRC), and improve the processing efficiency and quality. Methods: A 3D oblique finite element model of traditional turning of hardened 45 steel based on ABAQUS was established in this paper. The feasibility of the finite element model was verified by experiment, and the influence of cutting parameters on cutting force was predicted by single factor experiment and orthogonal experiment based on simulation. Finally, the empirical formula of cutting force was fitted by MATLAB. Besides, a lot of patents on 3D finite element simulation for metal machining were studied. Results: The results show that the 3D oblique finite element model can predict three direction cutting force, the 3D chip shape, and other variables of metal machining and the prediction errors of three direction cutting force are 5%, 9.02%, and 8.56%. The results of single factor experiment and orthogonal experiment are in good agreement with similar research, which shows that the model can meet the needs for engineering application. Besides, the empirical formula and the prediction results of cutting force are helpful for the parameters optimization and tool design. Conclusion: A 3D oblique finite element model of traditional turning of hardened 45 steel is established, based on ABAQUS, and the validation is carried out by comparing with experiment.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 128
Author(s):  
Yingpeng Zhu ◽  
Chuanyu Wu ◽  
Junhua Tong ◽  
Jianneng Chen ◽  
Leiying He ◽  
...  

Accurately obtaining the posture and spatial position of tea buds through machine vision and other technologies is difficult due to the small size, different shapes, and complex growth environment of tea buds. Therefore, end effectors are prone to problems, such as picking omission and picking error. This study designs a picking end effector based on negative pressure guidance for famous tea. This end effector uses negative pressure to guide tea buds in a top-down manner, thereby correcting their posture and spatial position. Therefore, the designed end effector has deviation tolerance performance that can improve the picking success rate. The pre-experiment is designed, the tip of apical bud is referred to as the descent position, and the negative pressure range is determined to be 0.6 to 0.9 kPa. A deviation tolerance orthogonal experiment is designed. Experimental results show that various experimental factors are ranked in terms of the significance level of the effect on the average success rate, and the significance ranking is as follows: negative pressure (P) > pipe diameter (D) > descent speed (V). An evaluation method of deviation tolerance performance is presented, and the optimal experiment factor-level combination is determined as: P = 0.9 kPa, D = 34 mm, V = 20 mm/s. Within the deviation range of a 10 mm radius, the average success rate of the negative pressure guidance of the end effector is 97.36%. The designed end effector can be applied to the intelligent picking of famous tea. This study can provide a reference for the design of similar picking end effectors for famous tea.


2013 ◽  
Vol 448-453 ◽  
pp. 786-790
Author(s):  
Wei Gao ◽  
Rong Fei Zhao ◽  
Qing Yu Liu ◽  
Xu Wei Bai

This paper take link mold pellet pelletizer to carry on the pellet fuel manufacture experiment with corn straw stalk. The influence of moisture content, material size and fermentation time impact on broken strength is studied by single factor experiment. Through quadratic regression orthogonal rotating combination experiment, establish mathematics equation of the factors and the straw pellet fuel broken strength and analyze the important degree of each experimental factor impact on the granulation rate. Through the optimized computation, definite optimization parameter of the highest broken strength is that raw material moisture content is 20%, fermentation time is 4h and particle size is 2.5mm. The result of verifying experiment indicat that the optimal parameter combination and the predict data measured were consistent.


2013 ◽  
Vol 726-731 ◽  
pp. 2829-2832
Author(s):  
Yong Shu Tian ◽  
Run Xin Hou

Photocatalyst of Fe-Sm-Yb modified TiO2 loaded on clay brick was prepared for degradation of NH3-N in coking water. The influence factors of NH3-N degradation rates were discussed by single factor experiment and orthogonal experiment. The optimum process conditions of photocatalytic degradation NH3-N in coking water were confirmed. The results show that NH3-N degradation rates 82.23% were highest in the conditions of pH 6.5, photocatalyst charge of 1.4 g, illumination for 6h, reaction at 55°C, calcination at 500°C.


Author(s):  
Junwei Liu ◽  
Kai Cheng ◽  
Hui Ding ◽  
Shijin Chen

Surface topography is an important characteristic of the surface integrity, and influences the performance and mechanical properties of the workpiece to a great extent in micro milling SiCp/Al composites. It is evaluated by three-dimensional surface roughness ( Sq) and fractal dimension ( Ds) in this paper. Based on the single factor experiment and the orthogonal experiment, the influence of process parameters (feed per tooth, spindle speed, milling depth, and milling width) on surface topography is studied. The results show that Sq is mainly affected by milling width and milling depth and optimal results for minimum Sq are: ae = 1.5 mm, ap = 0.08 mm, n = 12000 r/min, and fz=1 μm/z. While Ds is mainly affected by milling width and optimal parameters for maximum Ds are: ae=1 mm, n = 14000 r/min, fz = 1.5 μm/z and ap = 0.12 mm. There is a weak negative correlation between Sq and Ds. In addition, Ds is more sensitive to the main defects and in general a large Ds corresponds to a good surface.


2018 ◽  
Vol 175 ◽  
pp. 03052
Author(s):  
Yongliang Yuan

In order to improve the dynamic performance of a truck dump mechanism, the optimal parameter combination of the dump mechanism is studied. In combination with Adams' own modeling work, the dump mechanism is simplified and modeled and simulated. The objective function is optimized with the minimum lifting force, and the parameter combination of the best position relationship of the dump mechanism is obtained. The simulation results show that Adams can accurately predict the optimal parameter combination of mechanical devices, which have certain reference value for engineering design.


2020 ◽  
Vol 980 ◽  
pp. 144-153
Author(s):  
Lei Yu ◽  
Guang Yu Yan ◽  
John Beattie

Soybean protein isolate (SPI) is widely used in food industry because of its high protein nutritional function and good functional characteristics. However, due to the effect of amino acid composition and spatial structure on natural protein, its practical application is greatly limited. So it needs to be properly modified to meet the needs of production. In this study, SPI was used as substrate to explore the most suitable modification conditions by using complex enzymes (flavor protease, neutral protease, alkaline enzyme and transglutaminase) enzymolysis and then TG enzyme cross linking, in order to obtain SPI products with both solubility and gel as a special protein isolate for surimi products. The results show that: through the single factor experiment and orthogonal experiment, the optimized conditions of gel strength were determined: flavor protease: neutral protease: alkaline enzyme 1:1:2, pH 7, enzymolysis temperature 45°C, enzymolysis time 30 min. The optimized conditions of solubility: flavor protease: neutral protease: alkaline enzyme 1:2:2, pH 7, enzymolysis temperature 55°C, enzymolysis time 60 min. The result of orthogonal experiment: the optimized conditions was that flavor protease: neutral protease: alkaline enzyme 1:1:2, pH 7, enzymolysis temperature 55°C, enzymolysis time 60 min. The gel strength of products was 35.45 g, decreased 5.33% with control; Solubility was 36.24%, increased 54.01% with control. The modified SPI has excellent gel and solubility, and can be further applied to surimi products industry. And the results of this study provide a theoretical basis for its further application in surimi products.


2020 ◽  
Vol 73 (6) ◽  
pp. 1247-1262
Author(s):  
Yang Long ◽  
Zheming Zuo ◽  
Yixin Su ◽  
Jie Li ◽  
Huajun Zhang

The bacterial foraging optimisation (BFO) algorithm is a commonly adopted bio-inspired optimisation algorithm. However, BFO is not a proper choice in coping with continuous global path planning in the context of unmanned surface vehicles (USVs). In this paper, a grid partition-based BFO algorithm, named AS-BFO, is proposed to address this issue in which the enhancement is contributed by the involvement of the A* algorithm. The chemotaxis operation is redesigned in AS-BFO. Through repeated simulations, the relative optimal parameter combination of the proposed algorithm is obtained and the most influential parameters are identified by sensitivity analysis. The performance of AS-BFO is evaluated via five size grid maps and the results show that AS-BFO has advantages in USV global path planning.


2014 ◽  
Vol 955-959 ◽  
pp. 623-627
Author(s):  
Jing Wang ◽  
Hao Jie Li ◽  
Qian Kun Cheng ◽  
Xiao Tong Yan ◽  
Ai Qing Cao ◽  
...  

Autonomous coal fly ash modified by vitriol (H2SO4) was used to treat Phenol Waste Water. The treatment influences were determined by single-factor experiment and the prioritizing importance and optimizing combination of the influences were studied using orthogonal experiment. We found that the prioritizing importance of the influencing factors was as follow: dosage of ferrous sulfate (FeSO4) > dosage of hydrogen peroxide (H2O2) > initial concentration of phenol > PH > the dosage of modified coal fly ash. The optimizing combination of the influences was 5 wt.% FeSO4, 1 mL ; 3 wt.%H2O2, 7 mL; PH=5; initial concentration of phenol , 300 mg/L and the dosage of modified coal fly ash, 200 mg/L. Under the condition above, phenol removal rate was 99.46%.


2013 ◽  
Vol 864-867 ◽  
pp. 520-525 ◽  
Author(s):  
Hai Bo Yu ◽  
Li Feng Ding ◽  
Zheng Wang ◽  
Li Xin Shi

In this study, we performed a single-factor experiment and an orthogonal experiment to evaluate different processing conditions during the extraction of polyphenols from grape skin using microwave-assisted ethanol extraction. In the study, we found that the best conditions for polyphenol extraction using microwave assistance were as follows: 50% ethanol (40 mL) was used to extract polyphenols from grape skin (1 g) while in a 540-W microwave for 3 min.


Sign in / Sign up

Export Citation Format

Share Document