scholarly journals The Transformation of Agro-Climatic Resources of the Altai Region under Changing Climate Conditions

Agriculture ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 68 ◽  
Author(s):  
Nina Maximova ◽  
Komali Kantamaneni ◽  
Gennady Morkovkin ◽  
Darya Arnaut ◽  
Louis Rice

This research examines the transformation of the agro-climatic conditions of the Altai region as a result of climate change. The climate of the Altai region in Russia is sharply continental and characterized by dry air and significant weather variability, both in individual seasons and years. The current study is determined by the lack of detailed area-related analytical generalizations for the territory of the Altai region over the past 30 years. Most of the published data dealing with an integrated analysis of the agro-climatic conditions in the Altai region date back to the late 1960s and early 1970s; in most cases, this data is from climate reference-books based on the generalized data from the first half of the 20th century. To make accurate forecasts and to efficiently manage agricultural production in the Altai region, area-related data on the state and dynamics of agro-climatic changes have been analysed. The results reveal that in the period between 1964 and 2017, significant climatic changes occurred in the territory of the Altai region. These climatic changes affected the growing season length, which increased due to a shift in the dates of the air temperature transition above 10 °C, to earlier dates in spring and to later dates in autumn. Furthermore, the current study also revealed that the foothills of the Altai Mountains are the most moistened parts of the region and the Kulunda lowland is the most arid part. In the Altai region, the accumulated temperatures and amounts of precipitation during the growing season increased significantly, and the values of integrated coefficients and indices that reflect the moisture supply conditions for the territory also changed significantly. Based upon the results, a schematic map of the current precipitation distribution on the Altai region’s territory has been generated. These results and this map may be used to conduct more detailed studies in the field of agro-climatology and to update the current borders of agro-climatic areas and revision of the agro-climatic zonation scheme.

Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 290
Author(s):  
Koffi Djaman ◽  
Curtis Owen ◽  
Margaret M. West ◽  
Samuel Allen ◽  
Komlan Koudahe ◽  
...  

The highly variable weather under changing climate conditions affects the establishment and the cutoff of crop growing season and exposes crops to failure if producers choose non-adapted relative maturity that matches the characteristics of the crop growing season. This study aimed to determine the relationship between maize hybrid relative maturity and the grain yield and determine the relative maturity range that will sustain maize production in northwest New Mexico (NM). Different relative maturity maize hybrids were grown at the Agricultural Science Center at Farmington ((Latitude 36.69° North, Longitude 108.31° West, elevation 1720 m) from 2003 to 2019 under sprinkler irrigation. A total of 343 hybrids were grouped as early and full season hybrids according to their relative maturity that ranged from 93 to 119 and 64 hybrids with unknown relative maturity. The crops were grown under optimal management condition with no stress of any kind. The results showed non-significant increase in grain yield in early season hybrids and non-significant decrease in grain yield with relative maturity in full season hybrids. The relative maturity range of 100–110 obtained reasonable high grain yields and could be considered under the northwestern New Mexico climatic conditions. However, more research should target the evaluation of different planting date coupled with plant population density to determine the planting window for the early season and full season hybrids for the production optimization and sustainability.


2021 ◽  
Author(s):  
Olga Churakova (Sidorova) ◽  
Marina Fonti ◽  
Rolf Siegwolf ◽  
Tatyana Trushkina ◽  
Eugene Vaganov ◽  
...  

<p>We use an interdisciplinary approach combining stable isotopes in tree rings, pollen data, ice cores from temperature-limited environment in the Siberian north and developed a comprehensive description of the climatic changes over the past 1500 years. We found that the Climatic Optimum Period was warmer and drier compared to the Medieval one, but rather similar to the recent period. Our results indicate that the Medieval Warm period in the Taimyr Peninsula started earlier and was wetter compared to the northeastern part of Siberia (northeastern Yakutia). Summer precipitation reconstruction obtained from carbon isotopes in tree-ring cellulose from Taimyr Peninsula significantly correlated with the pollen data of the Lama Lake (Andreev et al. 2004) and oxygen isotopes of the ice core from Severnaya Zemlya (Opel et al. 2013) recording wetter climate conditions during the Medieval Warm period compared to the northeastern part of Siberia. Common large-scale climate variability was confirmed by significant relationship between oxygen isotope data in tree-ring cellulose from the Taimyr Peninsula and northeastern Yakutia, and oxygen isotope ice core data from Severnaya Zemlja during the Medieval Warm period and the recent one. Finally, we showed that the recent warming on the Taimyr Peninsula is not unprecedented in the Siberian north. Similar climate conditions were recorded by stable isotopes in tree rings, pollen, and ice core data 6000 years ago. On the northeastern part of Siberia newly developed a 1500-year summer vapor pressure deficit (VPD) reconstruction showed, that VPD increased recently, but does not yet exceed the maximum values reconstructed during the Medieval Warm period. The most humid conditions in the northeastern part of Siberia were recorded in the Early Medieval period and during the Little Ice Age. However, the increasing VPD under elevated air temperature in the last decades affects the hydrological regime of these sensitive ecosystems by greater evapotranspiration rates. Further VPD increase will significantly affect Siberian forests most likely leading to drought even under additional access of thawed permafrost water.</p><p>This work was supported by the FP7-PEOPLE-IIF-2008 - Marie Curie Action: "International Incoming Fellowships" 235122 and "Reintegration Fellowships" 909122 “Climatic and environmental changes in the Eurasian Subarctic inferred from tree-ring and stable isotope chronologies for the past and recent periods” and the Government of Krasnoyarsk Kray and Russian Foundation for Basic Research and Krasnoyarsk Foundation 20-44-240001 “Adaptation of conifer forests on the north of the Krasnoyarsk region (Taimyr Peninsula) to climatic changes after extreme events over the past 1500 years“ awarded to Olga V. Churakova (Sidorova).</p>


2019 ◽  
Vol 22 (1) ◽  
pp. 343-360 ◽  
Author(s):  
Vally Koubi

The link between climate change and conflict has been discussed intensively in academic literature during the past decade. This review aims to provide a clearer picture of what the research community currently has to say with regard to this nexus. It finds that the literature has not detected a robust and general effect linking climate to conflict onset. Substantial agreement exists that climatic changes contribute to conflict under some conditions and through certain pathways. In particular, the literature shows that climatic conditions breed conflict in fertile grounds: in regions dependent on agriculture and in combination and interaction with other socioeconomic and political factors such as a low level of economic development and political marginalization. Future research should continue to investigate how climatic changes interact with and/or are conditioned by socioeconomic, political, and demographic settings to cause conflict and uncover the causal mechanisms that link these two phenomena.


2019 ◽  
Vol 13 (1) ◽  
pp. 5-18 ◽  
Author(s):  
Irimia Liviu Mihai ◽  
Patriche Cristian Valeriu ◽  
LeRoux Renan ◽  
Quénol Herve ◽  
Tissot Cyril ◽  
...  

Abstract Climate projections have revealed the perspective of changing the climate of the world's wine regions in the coming decades by diversifying heliothermal resources. Research in the Cotnari winegrowing region over the past decade has shown that the local climate has been affected by such developments especially after 1980. This research continues the series of studies on the climate of the Cotnari winegrowing region through projections of the climatic conditions for the 2020-2100 time period based on the RCP 4.5 scenario. Average annual temperature, warmest month temperature, precipitation during the growing season, length of the growing season and the Huglin, IAOe and AvGST bioclimatic indices for the 2020-2050, 2051-2080 and 2081-2100 time periods indicate the evolution of Cotnari area climate towards suitability for red wines and loss of suitability for the white wines. Climatic suitability classes for wine production, shift between 2020-2100 to the higher, cooler zone of the winegrowing region, narrowing down their surface and disappearing successively at the maximum altitude of 315 m asl. They are further replaced from the lower zone by classes specific to warmer climates. The suitability for white wines, specific to wine region, disappears at the maximum altitude of 315 m asl around 2060, being replaced by climate suitability for the red wine production. The average temperature of the growing season will exceed 19.5°C after 2080, becoming unsuitable for the production of red quality wines of Cabernet Sauvingnon variety. After 2050, in the lower zone of the winegrowing region the warm IH5 class, suitable for Mediterranean varieties such as Carignan and Grenache will install, as compared to temperate IH3 class which characterizes today the lower zone and allows the production of white wines of the local Feteasca albă, Grasa de Cotnari, Frâncușa and Tămâioasa românească varieties. The results suggest the need to develop strategies for adapting the viticulture of the Cotnari area to climate change.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6967 ◽  
Author(s):  
Victoria T. González ◽  
Mikel Moriana-Armendariz ◽  
Snorre B. Hagen ◽  
Bente Lindgård ◽  
Rigmor Reiersen ◽  
...  

Climate change is modifying temperature and precipitation regimes across all seasons in northern ecosystems. Summer temperatures are higher, growing seasons extend into spring and fall and snow cover conditions are more variable during winter. The resistance of dominant tundra species to these season-specific changes, with each season potentially having contrasting effects on their growth and survival, can determine the future of tundra plant communities under climate change. In our study, we evaluated the effects of several spring/summer and winter climatic variables (i.e., summer temperature, growing season length, growing degree days, and number of winter freezing days) on the resistance of the dwarf shrub Empetrum nigrum. We measured over six years the ability of E. nigrum to keep a stable shoot growth, berry production, and vegetative cover in five E. nigrum dominated tundra heathlands, in a total of 144 plots covering a 200-km gradient from oceanic to continental climate. Overall, E. nigrum displayed high resistance to climatic variation along the gradient, with positive growth and reproductive output during all years and sites. Climatic conditions varied sharply among sites, especially during the winter months, finding that exposure to freezing temperatures during winter was correlated with reduced shoot length and berry production. These negative effects however, could be compensated if the following growing season was warm and long. Our study demonstrates that E. nigrum is a species resistant to fluctuating climatic conditions during the growing season and winter months in both oceanic and continental areas. Overall, E. nigrum appeared frost hardy and its resistance was determined by interactions among different season-specific climatic conditions with contrasting effects.


2017 ◽  
Author(s):  
Sohail Khan

The vector for the transmission of malaria is a mosquito and like all diseases which are transmitted through mosquitoes are affected by climatic conditions. In the present study, such type of investigation was done to find the influence of different climatic changes such as temperature and humidity on the incidence of malarial cases in Swat, Khyber Pakhtunkhwa, Pakistan from 2000 to 2016. The data relating to malarial cases and climate conditions were collected from District Health Officer (Saidu Sharif) and Meteorological Center respectively. Statistical analysis of the data was done by using MS Office software, i.e., MS Excel. It was found that with the increase in temperature and humidity, an increase in the incidence of Malaria occurred and vice versa. The effect of global warming and the increasing temperature could become an alarming factor in deciding the fate of malarial epidemics.


2009 ◽  
Vol 3 (1) ◽  
pp. 85-99 ◽  
Author(s):  
J. Noetzli ◽  
S. Gruber

Abstract. In high mountain areas, permafrost is important because it influences the occurrence of natural hazards, because it has to be considered in construction practices, and because it is sensitive to climate change. The assessment of its distribution and evolution is challenging because of highly variable conditions at and below the surface, steep topography and varying climatic conditions. This paper presents a systematic investigation of effects of topography and climate variability that are important for subsurface temperatures in Alpine bedrock permafrost. We studied the effects of both, past and projected future ground surface temperature variations on the basis of numerical experimentation with simplified mountain topography in order to demonstrate the principal effects. The modeling approach applied combines a distributed surface energy balance model and a three-dimensional subsurface heat conduction scheme. Results show that the past climate variations that essentially influence present-day permafrost temperatures at depth of the idealized mountains are the last glacial period and the major fluctuations in the past millennium. Transient effects from projected future warming, however, are likely larger than those from past climate conditions because larger temperature changes at the surface occur in shorter time periods. We further demonstrate the accelerating influence of multi-lateral warming in steep and complex topography for a temperature signal entering the subsurface as compared to the situation in flat areas. The effects of varying and uncertain material properties (i.e., thermal properties, porosity, and freezing characteristics) on the subsurface temperature field were examined in sensitivity studies. A considerable influence of latent heat due to water in low-porosity bedrock was only shown for simulations over time periods of decades to centuries. At the end, the model was applied to the topographic setting of the Matterhorn (Switzerland). Results from idealized geometries are compared to this first example of real topography, and possibilities as well as limitations of the model application are discussed.


2012 ◽  
Vol 518-523 ◽  
pp. 5798-5804
Author(s):  
Xiang Yi Ding ◽  
Yang Wen Jia

Many observational facts and studies have shown that the climatic conditions in the Hai River Basin, which is the political and cultural centre of China, changed significantly over last half of the 20th century. This study attempts to evaluate the variability of climatic elements such as precipitation and temperature in the basin based on observed meteorological data, and the temporal variations and sudden changes of precipitation and temperature during past 40 years (1961-2000) are analyzed combining moving-average and linear regression with Mann-Kendall method. In addition, the observed climatic changes are attributed to different factors including natural variability and anthropogenic forcing using the fingerprint-based attribution method. The results indicate that: 1) during 1961-2000, the precipitation slightly decreased and the estimated sudden change time was 1965, the temperature significantly increased and the estimated sudden change time was 1964; 2) natural climate variability may be the factors responsible for the observed precipitation changes during the past 40 years in the basin, while anthropogenic forcing may be the main factors responsible for the observed temperature changes during the past 40 years in the basin.


2016 ◽  
Vol 18 (1) ◽  
pp. 131-145 ◽  

<p>Assessment of aridity conditions prevailing in a certain area is essential for the research on climate and climate change. Greece is characterized by a variety of climatic conditions such as drought conditions or flooding phenomena. The current study focuses on three selected areas within Greece that present different climatic characteristics due to their location and aims to analyze and compare the aridity conditions prevailing in these areas. Aridity conditions were estimated using the Aridity Index (AI). Mann-Kendall test was applied to investigate possible trends. Spatial distribution of aridity conditions was performed using multi-linear regression techniques and Kriging method within ArcGIS 10.2.1.</p> <div> <p>The results indicated that the study areas face humid conditions, mostly due to the existence of high altitudes. Furthermore, the various climatic conditions are responsible for differentiations in seasonal analysis regarding the aridity conditions. The study areas related to the Mediterranean climate resulted more heterogeneous conditions compared with areas affected by the continental climate. Nevertheless, the created aridity spatial maps of trend analysis presented with differentiations, especially in the mountainous areas were an extreme downward trend is appeared. For the southern investigated area in Crete Island characterized purely by Mediterranean climate, the results were more moderate in terms of aridity conditions.</p> </div> <p>&nbsp;</p>


Author(s):  
C. Leauthaud ◽  
J. Demarty ◽  
B. Cappelaere ◽  
M. Grippa ◽  
L. Kergoat ◽  
...  

Abstract. Rainfall and climatic conditions are the main drivers of natural and cultivated vegetation productivity in the semiarid region of Central Sahel. In a context of decreasing cultivable area per capita, understanding and predicting changes in the water cycle are crucial. Yet, it remains challenging to project future climatic conditions in West Africa since there is no consensus on the sign of future precipitation changes in simulations coming from climate models. The Sahel region has experienced severe climatic changes in the past 60 years that can provide a first basis to understand the response of the water cycle to non-stationary conditions in this part of the world. The objective of this study was to better understand the response of the water cycle to highly variable climatic regimes in Central Sahel using historical climate records and the coupling of a land surface energy and water model with a vegetation model that, when combined, simulated the Sahelian water, energy and vegetation cycles. To do so, we relied on a reconstructed long-term climate series in Niamey, Republic of Niger, in which three precipitation regimes can be distinguished with a relative deficit exceeding 25% for the driest period compared to the wettest period. Two temperature scenarios (+2 and +4 °C) consistent with future warming scenarios were superimposed to this climatic signal to generate six virtual future 20-year climate time series. Simulations by the two coupled models forced by these virtual scenarios showed a strong response of the water budget and its components to temperature and precipitation changes, including decreases in transpiration, runoff and drainage for all scenarios but those with highest precipitation. Such climatic changes also strongly impacted soil temperature and moisture. This study illustrates the potential of using the strong climatic variations recorded in the past decades to better understand potential future climate variations.


Sign in / Sign up

Export Citation Format

Share Document