scholarly journals Effects of Mixed Hardwood and Sugarcane Biochar as Bark-Based Substrate Substitutes on Container Plants Production and Nutrient Leaching

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 156 ◽  
Author(s):  
Ping Yu ◽  
Lan Huang ◽  
Qiansheng Li ◽  
Isabel M. Lima ◽  
Paul M. White ◽  
...  

Biochar (BC) has the potential to replace bark-based commercial substrates in the production of container plants. A greenhouse experiment was conducted to evaluate the potential of mixed hardwood biochar (HB) and sugarcane bagasse biochar (SBB) to replace the bark-based commercial substrate. A bark-based commercial substrate was incorporated with either HB at 50% (vol.) or SBB at 50% and 70% (vol.), with a bark-based commercial substrate being used as the control. The total porosity (TP) and container capacity (CC) of all SBB-incorporated mixes were slightly higher than the recommended value, while, the others were within the recommended range. Both tomato and basil plants grown in the BC-incorporated mixes had a similar or higher growth index (GI), leaf greenness (indicated by soil-plant analyses development), and yield than the control. The leachate of all mixes had the highest NO3–N concentration in the first week after transplantation (1 WAT). All BC-incorporated mixes grown with both tomato and basil had similar NO3–N concentration to the control (except 50% SBB at 1 and 5 WAT, and 50% HB at 5 WAT with tomato plants; 50% SBB at 5 WAT with basil plants). In conclusion, HB could replace bark-based substrates at 50% and SBB at 70% for both tomato and basil plant growth, without negative effects.

2019 ◽  
Vol 9 (21) ◽  
pp. 4713 ◽  
Author(s):  
Ping Yu ◽  
Qiansheng Li ◽  
Lan Huang ◽  
Genhua Niu ◽  
Mengmeng Gu

To investigate the potential of biochar as a propagation mix component, three experiments were conducted. A phytotoxicity test was conducted with water extract of sugarcane bagasse biochar (SBB), SBB mixes (10%, 30%, 50%, and 70% SBB with 30% perlite (P) and the rest being peat moss (PM); by vol.), mixed hardwood biochar (HB) mixes (10%, 30%, 50%, 70% and 100% HB with PM; by vol.), PM, P, 70%PM:30%P, and a commercial propagation mix (exp. 1). None of the mixes caused phytotoxicity. The same biochar mixes (except 100% HB) were used for the seedling growth test (exp. 2). Both tomato and basil seedlings grown in all of the biochar mixes (except 50% HB) had significantly lower fresh weight, dry weight and growth index (GI) compared to a commercial propagation mix. Six seedlings from each biochar mix were transplanted into a commercial growing mix and grown for four weeks (exp. 3). Tomato seedlings from all biochar mixes (except 30% SBB) had similar SPAD (Soil-Plant Analyses Development) and GI to the control. Basil seedlings from all HB mixes, 70% and 100% SBB mixes had similar GI to the control. In conclusion, 70% HB could be amended with PM for tomato and basil seedling production without negative effects on plant biomass.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1004D-1004
Author(s):  
Yan Chen ◽  
Regina Bracy ◽  
Allen Owings

Annual vinca, Catharanthus roseus, is exceptionally adaptive to the summer heat and the sandy loam or clay soil in the southeastern region and provides season-long blooms once established in landscape plantings. A wide variety of colors, sizes, and applications are available for landscape use. However, diseases such as alternaria leaf spot and phytophthora leaf blight are prevalent in this region in vinca plantings. Effective disease control requires frequent fungicide application that is expensive and may pose negative effects on the environment. Proper planting techniques including date of planting, fertilization rate at planting, and variety selection may improve plant growth, reduce disease severity, and save landscape service business labor in disease management. Plants of three varieties: open-pollinated `Cooler Hot Rose', F1 hybrid `Titan Rose', and trailing variety `Mediterranean Lilac' were planted on 1 Apr. or 1 May in landscape plots. Plants were at the same growth stage at the time of planting and were fertilized with Osmocote 14–14–14 (3 months) at 0, 35, 70, or 140 g·m2. Plant growth index indicates that plant growth increased significantly at increasing fertilization rates; however, plant overall quality ratings were not significantly different among fertilized plants. Disease incidence in July suggests that late planting may reduce alternaria leaf spot in open-pollinated and hybrid upright type vinca. Disease severity in August was more pronounced on trailing vinca and more severe when plants were not fertilized or fertilized with the highest fertilization rate. Tissue analysis indicates that trailing vinca `Mediterranean Lilac' may require less fertilization than upright type.


Horticulturae ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 14 ◽  
Author(s):  
Lan Huang ◽  
Mengmeng Gu

Biochar refers to a processed, carbon-rich material made from biomass. This article provides a brief summary on the effects of biochar on container substrate properties and plant growth. Biochar could be produced through pyrolysis, gasification, and hydrothermal carbonization of various feedstocks. Biochar produced through different production conditions and feedstocks affect its properties and how it performs when incorporated in container substrates. Biochar incorporation affects the physical and chemical properties of container substrates, including bulk density, total porosity, container capacity, nutrient availability, pH, electrical conductivity and cation exchange capacity. Biochar could also affect microbial activities. The effects of biochar incorporation on plant growth in container substrates depend on biochar properties, plant type, percentage of biochar applied and other container substrates components mixed with biochar. A review of the literature on the impact of biochar on container-grown plants without other factors (such as irrigation or fertilization rates) indicated that 77.3% of the studies found that certain percentages of biochar addition in container substrates promoted plant growth, and 50% of the studies revealed that plant growth decreased due to certain percentages of biochar incorporation. Most of the plants tested in these studies were herbaceous plants. More plant species should be tested for a broader assessment of the use of biochar. Toxic substances (heavy metals, polycyclic aromatic hydrocarbons and dioxin) in biochars used in container substrates has rarely been studied. Caution is needed when selecting feedstocks and setting up biochar production conditions, which might cause toxic contaminants in the biochar products that could have negative effects on plant growth.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 463B-463
Author(s):  
P. Jobin ◽  
J. Caron ◽  
C. Menard ◽  
B. Dansereau

Low water retention in hanging baskets is a constraint in urban floriculture and hydrogel addition is an alternative. However, growth may be reduced with such a product depending on the substrate used. This study was conducted to determine the combined effects of substrate and type of hydrogel on the growth of Surfinia plants produced in hanging baskets. During Spring 1998, three rooted cuttings of Surfinia (Petunia × hybrida `Brilliant Pink') were transplanted into 30-cm hanging baskets. Plants were transplanted into one of the following substrates: 1) Pro-Mix BX, 2) a blend of 4/5 Pro-Mix BX and 1/5 compost, or 3) 1/3 perlite 1/3 vermiculite and 1/3 compost (v/v). These three substrates were amended with two types of hydrogels. The first type, Soil Moist, is an acrylic-acrylamide copolymer and the second type is Aqua-Mend, an acrylic polymer. Plants were grown for 8 weeks under standard irrigation and fertilization practices. Plant growth characteristics, percent dry weight, mineral nutrition, and growth index were determined. Substrate physical properties such as available water content, unsaturated hydraulic conductivity and total porosity were measured. The dry weight and growth index of plants in Pro-Mix BX amended with both types of hydrogels were greater than those plants growing in Pro-Mix BX without hydrogel. Plants growing in substrates 2 and 3 with hydrogels were smaller or similar respectively than those plants growing in substrates without hydrogel. Their effects on physical properties of substrates and plant growth will be discussed.


1970 ◽  
Vol 17 ◽  
pp. 17-22 ◽  
Author(s):  
Kamal Singh ◽  
A. A. Khan ◽  
Iram Khan ◽  
Rose Rizvi ◽  
M. Saquib

Plant growth, yield, pigment and protein content of cow-pea were increased significantly at lower levels (20 and 40%) of fly ash but reverse was true at higher levels (80 and 100%). Soil amended by 60% fly ash could cause suppression in growth and yield in respect to 40% fly ash treated cow-pea plants but former was found at par with control (fly ash untreated plants). Maximum growth occurred in plants grown in soil amended with 40% fly ash. Nitrogen content of cow-pea was suppressed progressively in increasing levels of fly ash. Moreover,  Rhizobium leguminosarum  influenced the growth and yield positively but Meloidogyne javanica caused opposite effects particularly at 20 and 40% fly ash levels. The positive effects of R. leguminosarum were marked by M. javanica at initial levels. However, at 80 and 100% fly ash levels, the positive and negative effects of R. leguminosarum and/or M. javanica did not appear as insignificant difference persist among such treatments.Key words:  Meloidogyne javanica; Rhizobium leguminosarum; Fly ash; Growth; YieldDOI: 10.3126/eco.v17i0.4098Ecoprint An International Journal of Ecology Vol. 17, 2010 Page: 17-22 Uploaded date: 28 December, 2010  


Author(s):  
Mohammad Faizan ◽  
Fangyuan Yu ◽  
Chen Chen ◽  
Ahmad Faraz ◽  
Shamsul Hayat

: Abiotic stresses arising from atmosphere change belie plant growth and yield, leading to food reduction. The cultivation of a large number of crops in the contaminated environment is a main concern of environmentalists in the present time. To get food safety, a highly developed nanotechnology is a useful tool for promoting food production and assuring sustainability. Nanotechnology helps to better production in agriculture by promoting the efficiency of inputs and reducing relevant losses. This review examines the research performed in the past to show how zinc oxide nanoparticles (ZnO-NPs) are influencing the negative effects of abiotic stresses. Application of ZnO-NPs is one of the most effectual options for considerable enhancement of agricultural yield globally under stressful conditions. ZnO-NPs can transform the agricultural and food industry with the help of several innovative tools in reversing oxidative stress symptoms induced by abiotic stresses. In addition, the effect of ZnO-NPs on physiological, biochemical, and antioxidative activities in various plants have also been examined properly. This review summarizes the current understanding and the future possibilities of plant-ZnO-NPs research.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 357
Author(s):  
Zhaohui Jia ◽  
Miaojing Meng ◽  
Chong Li ◽  
Bo Zhang ◽  
Lu Zhai ◽  
...  

Anthropogenic overexploitation poses significant threats to the ecosystems that surround mining sites, which also have tremendous negative impacts on human health and society safety. The technological capacity of the ecological restoration of mine sites is imminent, however, it remains a challenge to sustain the green restorative effects of ecological reconstruction. As a promising and environmentally friendly method, the use of microbial technologies to improve existing ecological restoration strategies have shown to be effective. Nonetheless, research into the mechanisms and influences of rock-solubilizing microbial inoculums on plant growth is negligible and the lack of this knowledge inhibits the broader application of this technology. We compared the effects of rock-solubilizing microbial inoculums on two plant species. The results revealed that rock-solubilizing microbial inoculums significantly increased the number of nodules and the total nodule volume of Robinia pseudoacacia L. but not of Lespedeza bicolor Turcz. The reason of the opposite reactions is possibly because the growth of R. pseudoacacia was significantly correlated with nodule formation, whereas L. bicolor’s growth index was more closely related to soil characteristics and if soil nitrogen content was sufficient to support its growth. Further, we found that soil sucrase activity contributed the most to the height of R. pseudoacacia, and the total volume of root nodules contributed most to its ground diameter and leaf area. Differently, we found a high contribution of total soil carbon to seedling height and ground diameter of L. bicolor, and the soil phosphatase activity contributed the most to the L. bicolor’ s leaf area. Our work suggests that the addition of rock-solubilizing microbial inoculums can enhance the supply capacity of soil nutrients and the ability of plants to take up nutrients for the promotion of plant growth. Altogether, our study provides technical support for the practical application of rock-solubilizing microbes on bare rock in the future.


2015 ◽  
Vol 42 (8) ◽  
pp. 770 ◽  
Author(s):  
Saqib Saleem Akhtar ◽  
Mathias Neumann Andersen ◽  
Muhammad Naveed ◽  
Zahir Ahmad Zahir ◽  
Fulai Liu

The objective of this work was to study the interactive effect of biochar and plant growth-promoting endophytic bacteria containing 1-aminocyclopropane-1-carboxylate deaminase and exopolysaccharide activity on mitigating salinity stress in maize (Zea mays L.). The plants were grown in a greenhouse under controlled conditions, and were subjected to separate or combined treatments of biochar (0% and 5%, w/w) and two endophytic bacterial strains (Burkholderia phytofirmans (PsJN) and Enterobacter sp. (FD17)) and salinity stress. The results indicated that salinity significantly decreased the growth of maize, whereas both biochar and inoculation mitigated the negative effects of salinity on maize performance either by decreasing the xylem Na+ concentration ([Na+]xylem) uptake or by maintaining nutrient balance within the plant, especially when the two treatments were applied in combination. Moreover, in biochar-amended saline soil, strain FD17 performed significantly better than did PsJN in reducing [Na+]xylem. Our results suggested that inoculation of plants with endophytic baterial strains along with biochar amendment could be an effective approach for sustaining crop production in salt-affected soils.


Sign in / Sign up

Export Citation Format

Share Document