scholarly journals Comparative Assessment of Different Crop Rotation Schemes for Organic Common Bean Production

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1269
Author(s):  
Ioannis Karavidas ◽  
Georgia Ntatsi ◽  
Theodora Ntanasi ◽  
Ioannis Vlachos ◽  
Anastasia Tampakaki ◽  
...  

The aim of the current study was to contribute to the establishment of sustainable organic crop rotation schemes for common bean under mild-winter climatic conditions. Common bean was cultivated according to organic or conventional farming practices during spring-summer in two successive years with crop and treatment during the preceding winter as either: (a) organic broccoli, (b) conventional broccoli, (c) organic faba bean used as green manure, or (d) fallow. Common bean was either inoculated with Rhizobium tropici CIAT 899 or non-inoculated, while faba bean was inoculated or non-inoculated with Rhizobium laguerreae VFLE1. Inoculating faba bean with rhizobia enhanced dry biomass production and biological N-fixing ability in both experimental years. Furthermore, organic farming did not restrict the yield of broccoli compared to conventional practices during the first year, while the reverse was the case in the second year, due to reduced soil N availability. Furthermore, green manure enhanced the fresh pod yield in the following organic crop of common bean in both years. The lowest yield was recorded in organically grown common bean when the preceding winter crop was organically grown broccoli in both years. Rhizobia inoculation of the common bean during the first year slightly increased atmospheric N fixation by common bean.

HortScience ◽  
2013 ◽  
Vol 48 (8) ◽  
pp. 1027-1033 ◽  
Author(s):  
Francesco Montemurro ◽  
Angelo Fiore ◽  
Gabriele Campanelli ◽  
Fabio Tittarelli ◽  
Luigi Ledda ◽  
...  

A 2-year field experiment was carried out in a Mediterranean environment to study the effects of vetch (Vicia sativa L.) residue management strategies incorporating green manure (GM) using a roller-crimper (RC) and different organic fertilizers (municipal solid waste compost, anaerobic digestate, and a commercial organic fertilizer) on organic zucchini (Cucurbita pepo L.) yield and quality. Zucchini yield was influenced positively by the vetch residue management strategy, although the response was significantly different between years. The vetch cover crop increased marketable zucchini yield in the first year by 46.6% compared with the fallow (FA) treatment, indicating that this fertility-building crop could reduce off-farm nitrogen (N) fertilizer input for subsequent crops. Averaging over 2 years of the experiment, marketable zucchini yield increased by 15.2% and 38% with the RC mulch and GM plow-down, respectively, compared with the FA treatment, although differences were significant in the first year only. The application of organic fertilizers in vetch management plots increased marketable zucchini yield by 21.8% in the first year compared with the unfertilized control. This result is particularly relevant, because organic fertilizers were applied at ≈50% of the normal application rate for zucchini after taking into account biological N fixation attributable to the vetch. The concentrations of soil mineral N at harvest were 19, 27, and 28 mg·kg−1 for the RC, FA, and GM treatments, respectively. These mineral N concentrations indicated that a portion of applied organic fertilizer N, and N attributable to vetch (GM and RC), remained in the soil at harvest, suggesting the potential for leaching, which should be taken into account in the overall fertilization program. These research findings suggest that effective vetch cover crop management and the application of organic fertilizers can improve yield and quality of organically managed zucchini.


2020 ◽  
Vol 15 (2) ◽  
pp. 59-65
Author(s):  
Rafil Shakirov ◽  
Zakirzhan Bikmuhametov ◽  
Fidail Hisamiev ◽  
Faik Safiollin

The purpose of the work is to study the effect and aftereffect of various types and rates of fertilizers on the change in the main fertility indicators of gray forest soil, as well as the productivity of the crop rotation link. The experiments were carried out in the grain-row unit (spring wheat - corn - spring wheat - peas) of a nine-field grain-herb-row crop rotation. The scheme of the experiment provided for the study of the following options: the calculated doses of mineral fertilizers for the formation of 4 t/ha of spring wheat grain, 40 t/ha of green mass of corn, 3 t/ha of pea grain, thermally treated granulated chicken manure in doses 1, 2, 3 t/ha, bedding manure in a dose equivalent to 3 t/ha of granulated droppings, buckwheat stubble green manure sown after harvesting winter rye. Under the influence of 1-2-3 t/ha of granulated chicken manure, the content of nitrogen (Nг) in the soil increased, compared with the control, by 73.1-81.1-112.0%, respectively, phosphorus (P2O5) - by 69.3- 79.8-91.3%, potassium (K2O) - by 90.3-140-188%; in the first year of aftereffect, Nг increased by 42.6-50.5-58.4%, P2O5- by 28.6-39.3-52.1%, K2O - by 56.1-84.8-170, 7%; in the second year of aftereffect Nг - by 13.1-21.3-44.0%, P2O5- by 40.1-51.2-74.4%, K2O - by 63.3-124.1-133.1 %. When manure was applied (42 t/ha), the amount of Nг, P2O5, K2O decreased, compared to 3 t/ha of granulated chicken manure, in the year of action, respectively, by 43.4, 19.0 and 42.2%, in the first year of aftereffect - by 16.6, 22.1, 48.1%. In the second year of the aftereffect, the values of these indicators when using manure and 3 t/ha of granulated chicken manure were equivalent. In the variant with the incorporation of buckwheat green manure, the content of mobile forms of macronutrients varied similarly to manure. Under the influence of 1, 2 and 3 t/ha of granulated chicken manure, the productivity of the crop rotation link increased, compared with the control, by 78.5, 104.3, 122.6%, respectively. The effect from the action and three years of aftereffect of 42 t/ha of manure was below the level of 3 t/ha of of granulated chicken manure by 12% (productivity growth 110.6%), buckwheat green manure - at the level of 1 t/ha of granulated chicken manure (productivity growth 80.6%) ... Depending on the type and norms of fertilizers, the profitability of production was 54 ... 196%


2001 ◽  
Vol 18 (4) ◽  
pp. 345-363 ◽  
Author(s):  
Torsten Mueller ◽  
Kristian Thorup-Kristensen

2017 ◽  
Vol 1 (92) ◽  
pp. 62-68
Author(s):  
R. Holod ◽  
О. Bilinska ◽  
H. Shubala

There were analyzed and disclosed the basic components of arable farming systems and their Meaning, the current state and scientific principles in the context of the further development of field crop cultivation in the conditions of Western Forest-Steppe. The purpose of research. To study an effect of alternation of crop in crop rotation in conditions of brief rotation on the soil water regime, productivity and economic efficiency. Methods. Field, laboratory, comparative and analytical. Results. The results of researches on study of productivity of four-field crop rotations with short rotation depending on their saturation by the grain and tilled cultures, of various use of mineral fertilizers, green manure crops and collateral products which were conducted during 2014-2015 in the stationary experiment of the scientific and technological department of plant growing and arable farming, of the TDSGDS of the IKSGP of NAAN are resulted In the article. The elements of the biologization of farming are the basis of our development of crop rotations with short rotation. The study of the effect of green manure crops and collateral products in four-field crop rotations with a different set of crops on the change of soil fertility and productivity of crop rotations as a whole was carried out to this purpose. According to the results of the research, is provided the information on the effectiveness of improving the field crop rotations with short rotation with varying degrees of saturation by grain and tilled crops, that ensure the production of environmentally friendly products, reducing the cost of grain, improving the quality of marketable products. The study of the effect of alternation of crop in crop rotation in conditions of brief rotation on the soil water regime, productivity and economic efficiency showed that an increase in crop rotation productivity is observed in short-rotation crop rotations, if they are saturated by grain crops up to 100%, cereals crops reduction to 50% in crop rotations contributes to a decrease in crop productivity. Conclusion. Thus, the results of the research showed that with the correct construction of short rotational crop rotations, such problems as rational use of nutrients and soil moisture, control of weeds and pests of agricultural crops, improvement of the physical and chemical properties of the soil, increased efficiency in the use of fertilizers and equipment, Cheapening of the received agricultural product may be solved.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 959
Author(s):  
Arshad Jalal ◽  
Fernando Shintate Galindo ◽  
Eduardo Henrique Marcandalli Boleta ◽  
Carlos Eduardo da Silva Oliveira ◽  
André Rodrigues dos Reis ◽  
...  

Enrichment of staple food with zinc (Zn) along with solubilizing bacteria is a sustainable and practical approach to overcome Zn malnutrition in human beings by improving plant nutrition, nutrient use efficiency, and productivity. Common bean (Phaseolus vulgaris L.) is one of a staple food of global population and has a prospective role in agronomic Zn biofortification. In this context, we evaluated the effect of diazotrophic bacterial co-inoculations (No inoculation, Rhizobium tropici, R. tropici + Azospirillum brasilense, R. tropici + Bacillus subtilis, R. tropici + Pseudomonas fluorescens, R. tropici + A. brasilense + B. subtilis, and R. tropici + A. brasilense + P. fluorescens) in association with soil Zn application (without and with 8 kg Zn ha−1) on Zn nutrition, growth, yield, and Zn use efficiencies in common bean in the 2019 and 2020 crop seasons. Soil Zn application in combination with R. tropici + B. subtilis improved Zn accumulation in shoot and grains with greater shoot dry matter, grain yield, and estimated Zn intake. Zinc use efficiency, recovery, and utilization were also increased with co-inoculation of R. tropici + B. subtilis, whereas agro-physiological efficiency was increased with triple co-inoculation of R. tropici + A. brasilense + P. fluorescens. Therefore, co-inoculation of R. tropici + B. subtilis in association with Zn application is recommended for biofortification and higher Zn use efficiencies in common bean in the tropical savannah of Brazil.


2012 ◽  
Vol 27 (1) ◽  
pp. 60-67 ◽  
Author(s):  
Steven J. Shirtliffe ◽  
Eric N. Johnson

AbstractOrganic farmers in western Canada rely on tillage to control weeds and incorporate crop residues that could plug mechanical weed-control implements. However, tillage significantly increases the risk of soil erosion. For farmers seeking to reduce or eliminate tillage, potential alternatives include mowing or using a roller crimper for terminating green manure crops (cover crops) or using a minimum tillage (min-till) rotary hoe for mechanically controlling weeds. Although many researchers have studied organic crop production in western Canada, few have studied no-till organic production practices. Two studies were recently conducted in Saskatchewan to determine the efficacy of the following alternatives to tillage: mowing and roller crimping for weed control, and min-till rotary hoeing weed control in field pea (Pisum sativum L.). The first study compared mowing and roller crimping with tillage when terminating faba bean (Vicia faba L.) and field pea green manure crops. Early termination of annual green manure crops with roller crimping or mowing resulted in less weed regrowth compared with tillage. When compared with faba bean, field pea produced greater crop biomass, suppressed weeds better and had less regrowth. Wheat yields following pea were not affected by the method of termination. Thus, this first study indicated that roller crimping and mowing are viable alternatives to tillage to terminate field pea green manure crops. The second study evaluated the tolerance and efficacy of a min-till rotary harrow in no-till field pea production. The min-till rotary hoe was able to operate in no-till cereal residues and multiple passes did not affect the level of residue cover. Field pea exhibited excellent tolerance to the min-till rotary hoe. Good weed control occurred with multiple rotary hoe passes, and pea seed yield was 87% of the yield obtained in the herbicide-treated check. Therefore, this second study demonstrated that min-till rotary hoeing effectively controls many small seeded annual weeds in the presence of crop residue and thus can reduce the need for tillage in organic-cropping systems.


2014 ◽  
Vol 65 (5) ◽  
pp. 428 ◽  
Author(s):  
R. A. Reen ◽  
J. P. Thompson ◽  
T. G. Clewett ◽  
J. G. Sheedy ◽  
K. L. Bell

In Australia, root-lesion nematode (RLN; Pratylenchus thornei) significantly reduces chickpea and wheat yields. Yield losses from RLN have been determined through use of nematicide; however, nematicide does not control nematodes in Vertosol subsoils in Australia’s northern grains region. The alternative strategy of assessing yield response, by using crop rotation with resistant and susceptible crops to manipulate nematode populations, is poorly documented for chickpea. Our research tested the effectiveness of crop rotation and nematicide against P. thornei populations for assessing yield loss in chickpea. First-year field plots included canola, linseed, canaryseed, wheat and a fallow treatment, all with and without the nematicide aldicarb. The following year, aldicarb was reapplied and plots were re-cropped with four chickpea cultivars and one intolerant wheat cultivar. Highest P. thornei populations were after wheat, at 0.45–0.6 m soil depth. Aldicarb was effective to just 0.3 m for wheat and 0.45 m for other crops, and increased subsequent crop grain yield by only 6%. Canola, linseed and fallow treatments reduced P. thornei populations, but low mycorrhizal spore levels in the soil after canola and fallow treatments were associated with low chickpea yield. Canaryseed kept P. thornei populations low throughout the soil profile and maintained mycorrhizal spore densities, resulting in grain yield increases of up to 25% for chickpea cultivars and 55% for wheat when pre-cropped with canaryseed compared with wheat. Tolerance indices for chickpeas based on yield differences after paired wheat and canaryseed plots ranged from 80% for cv. Tyson to 95% for cv. Lasseter and this strategy is recommended for future use in assessing tolerance.


2013 ◽  
Vol 105 (6) ◽  
pp. 1721-1727 ◽  
Author(s):  
Enderson P. B. Ferreira ◽  
Luis F. Stone ◽  
Agostinho D. Didonet

2013 ◽  
Vol 10 (6) ◽  
pp. 3869-3887 ◽  
Author(s):  
R. Q. Thomas ◽  
G. B. Bonan ◽  
C. L. Goodale

Abstract. In many forest ecosystems, nitrogen (N) deposition enhances plant uptake of carbon dioxide, thus reducing climate warming from fossil fuel emissions. Therefore, accurately modeling how forest carbon (C) sequestration responds to N deposition is critical for understanding how future changes in N availability will influence climate. Here, we use observations of forest C response to N inputs along N deposition gradients and at five temperate forest sites with fertilization experiments to test and improve a global biogeochemical model (CLM-CN 4.0). We show that the CLM-CN plant C growth response to N deposition was smaller than observed and the modeled response to N fertilization was larger than observed. A set of modifications to the CLM-CN improved the correspondence between model predictions and observational data (1) by increasing the aboveground C storage in response to historical N deposition (1850–2004) from 14 to 34 kg C per additional kg N added through deposition and (2) by decreasing the aboveground net primary productivity response to N fertilization experiments from 91 to 57 g C m−2 yr−1. Modeled growth response to N deposition was most sensitive to altering the processes that control plant N uptake and the pathways of N loss. The response to N deposition also increased with a more closed N cycle (reduced N fixation and N gas loss) and decreased when prioritizing microbial over plant uptake of soil inorganic N. The net effect of all the modifications to the CLM-CN resulted in greater retention of N deposition and a greater role of synergy between N deposition and rising atmospheric CO2 as a mechanism governing increases in temperate forest primary production over the 20th century. Overall, testing models with both the response to gradual increases in N inputs over decades (N deposition) and N pulse additions of N over multiple years (N fertilization) allows for greater understanding of the mechanisms governing C–N coupling.


Revista CERES ◽  
2016 ◽  
Vol 63 (3) ◽  
pp. 315-322 ◽  
Author(s):  
Vagner do Nascimento ◽  
Orivaldo Arf ◽  
Maria Aparecida Anselmo Tarsitano ◽  
Nayara Fernanda Siviero Garcia ◽  
Mariele de Souza Penteado ◽  
...  

ABSTRACT The previous cultivation of green manures and mechanical soil decompression are options to minimize compaction of the topsoil in no-tilage system (NTS) set in different production systems in the Brazilian Savannah. In addition, it is essential to relate these agricultural practices with the economic benefits generated through the production cycles. The objective of this study was to evaluate economically the effect of sporadic mechanical decompression of the soil and previous cultivation of green manure in the production and net gain margin of upland rice and "winter" common bean, under sprinkler irrigation, in NTS in lowland Brazilian savannah. This study was developed in the 2012/13 harvest and 2013 winter in Selvíria, state of Mato Grosso do Sul, in an clay texture Oxisol in the savanah in the state of Mato Grosso do Sul, in a randomized block design arranged in a 5 x 2 factorial arrangement with four replications. The treatments were a combination of five green manures (fallow (control), Cajanus cajan, Crotalaria juncea, Pennisetum glaucum and Urochloa ruziziensis) with and without mechanical soil scarification. The yields of upland rice and common bean grains were not influenced by the previous green manure cultivation; the upland rice grown in succession to Cajanus cajan in the presence of mechanical soil scarification provided greater increase in grain yield and higher gross margin profit. Beans cultivated in succession to Crotalaria juncea and Pennisetum glaucum in the presence of mechanical soil scarification, followed by rice cultivation, provided greater increases in grain yield and gross profit margins.


Sign in / Sign up

Export Citation Format

Share Document