scholarly journals Biochar Impacts on Acidic Soil from Camellia Oleifera Plantation: A Short-Term Soil Incubation Study

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1446
Author(s):  
Qianqian Song ◽  
Yifan He ◽  
Yuefeng Wu ◽  
Shipin Chen ◽  
Taoxiang Zhang ◽  
...  

Nowadays, biochar is increasingly used widely as an important soil amendment to enhance soil nutrients availability. Therefore, we investigated the effect of C.oleifera shell biochar (CSB) on C.oleifera plantation soils to provide evidence that C. oleifera shell as a raw material in biochar has great potential to be a soil amendment. For this, a short-term incubation experiment was conducted in controlled conditions to evaluate the effects of CSB application on two soil chemical properties, microbial biomass, and enzymatic activity. We compared two acidic soils, mixed with CSB of three pyrolysis temperatures (300, 500, and 700 °C), and two application rates (3% and 5% (w/w)), incubated for 180 days. The results showed that the soil pH, total P (TP), and available P (AP) significantly increased under 5CSB700 in two soils, and indicated CSB application rate and pyrolysis temperature had a significant impact on soil pH, TP, and AP (p < 0.05). CSB application also significantly increased the total inorganic P in two soils and presented a significantly positive correlation with soil pH, TP, and AP under redundancy analysis. The results suggested that CSB application has a variable effect on soil enzymatic activity, microbial biomass C (MBC), and microbial biomass P (MBP) on average, while it increased the soil microbial biomass N (MBN) in both soils. We concluded that CSB could be a soil amendment to increase soil nutrients of C.oleifera plantation soils. Before the application of biochar to C.oleifera plantation forest soils, long-term studies are required to assess the effects of biochar under field conditions and its promoting effect on the growth of C. oleifera.

1969 ◽  
Vol 100 (2) ◽  
pp. 123-140
Author(s):  
Ian C. Pagán-Roig ◽  
Joaquín A. Chong ◽  
José A. Dumas ◽  
Consuelo Estévez de Jensen

The objective of this work was to measure the effects of repeated short-term organic amendments that we termed soil treatment management cycles (STMC) on physical and biological properties of a San Antón series soil. Each STMC lasted 60 days and consisted of incorporating 5% organic matter from coffee pulp compost; the planting, growth and incorporation of an intercrop of four green manure species; and the application of mycorrhizae and compost tea. The treatments were labeled: CL0, CL1, CL2 and CL3; where CL0 was the control, CL1 received one STMC, CL2 and CL3 received two and three STMC, respectively. The STMC intended to mimic the overall effect of a sustainable agricultural system, not to measure the individual effects of the practices. All treatments (CL1, CL2, CL3) showed an increase in soil organic matter (p≤0.05). When compared to the CL0 control, saturated hydraulic conductivity increased and bulk density decreased in all soils. Soil macroporosity was significantly increased by CL2 and CL3. Soil aggregate stability increased in CL1, CL2 and CL3 plots. Microbial biomass C increased in treatment CL3, and microbial biomass N increased in CL2 and CL3. The production of stable aggregates was correlated to humic acid content and positively influenced all other physical parameters assessed in this study. The STMC had a positive impact on soil properties by increasing the soil organic matter as well as the humic acid fraction. Soil macroporosity, defined as porosity with radius > 38 µm, was significantly increased by treatments CL2 and CL3. All of the organic matter fractions, including total organic matter, humic acid content, microbial biomass C and microbial biomass N were significantly increased by one or more STMC.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1386
Author(s):  
Michael Stotter ◽  
Florian Wichern ◽  
Ralf Pude ◽  
Martin Hamer

Cultivation of Miscanthus x giganteus L. (Mis) with annual harvest of biomass could provide an additional C source for farmers. To test the potential of Mis-C for immobilizing inorganic N from slurry or manure and as a C source for soil organic matter build-up in comparison to wheat (Triticum aestivum L.) straw (WS), a greenhouse experiment was performed. Pot experiments with ryegrass (Lolium perenne L.) were set up to investigate the N dynamics of two organic fertilisers based on Mis at Campus Klein-Altendorf, Germany. The two fertilisers, a mixture of cattle slurry and Mis as well as cattle manure from Mis-bedding material resulted in a slightly higher N immobilisation. Especially at the 1st and 2nd harvest, they were partly significantly different compared with the WS treatments. The fertilisers based on Mis resulted in a slightly higher microbial biomass C and microbial biomass N and thus can be identified as an additional C source to prevent nitrogen losses and for the build-up of soil organic matter (SOM) in the long-term.


2011 ◽  
Vol 39 (1) ◽  
pp. 107
Author(s):  
Mignon S. SANDOR ◽  
Traian BRAD ◽  
Aurel MAXIM ◽  
Constantin TOADER

A mesocosm study was conducted in order to evaluate the effects of short-term rainfall and temperature variation on soil microbial biomass and bacteria to fungi ratio. In addition, the relation between the decomposition process of two organic fertilizers, cattle manure and barley straw, and the activity of soil microbial biomass was also studied. In order to assess the effect of biological activity on soil fertility the dynamics of soil pH, N-NO3-, N-NH4+, Corg and Nt during plant growing season was measured. The results suggest that short-term variation of climate had a significant effect on microbial biomass with dry periods distinguished by a reduced microbial biomass compared to wet periods. The ratio bacteria to fungi seems also to be sensitive to variations in rainfall and temperature regime, however further studies are required to draw a definitive conclusion. Regarding the type of fertilizer used, the straw treatments showed higher microbial biomass than the manure treatments, but higher decomposition rate was observed in manure fertilized soil. The effect of soil biological activity on soil pH was limited for both manure and straw treatments while the changes of the soil nitrate amounts are related to the microbial biomass. The study indicates that nitrate immobilization and mineralization processes are influenced by meteorological conditions and microbial biomass dynamics. In contrast, soil organic carbon and total nitrogen did not seem to be affected by variations in temperature, rainfall and microbial activity.


2020 ◽  
Vol 54 (3 (253)) ◽  
pp. 235-245
Author(s):  
K.A. Ghazaryan ◽  
H.S. Movsesyan

The aim of this study was to define a relationship between heavy metal (Cu, Mo) pollution of soil and various extracellular enzyme activities. Six enzymatic activities involved in cycles of carbon, nitrogen, phosphorus and sulfur (β-glucosidase, chitinase, leucine-aminopeptidase, acid phosphomonoesterase, alkaline phosphomonoesterase, and arylsulphatase) as well as microbial biomass were determined in soil samples collected in the surroundings of Zangezur Copper and Molybdenum Combine. The investigations showed that pollution of soil with copper and molybdenum led to a decrease in microbial biomass and soil enzymatic activity, which in turn had a negative impact on cycles of chemical elements, in particular C, P, N and S. This gives reason to conclude that the changes in soil microbial biomass and enzymatic activity may act as indicators of soil biological activity and quality.


2011 ◽  
Vol 1 (4) ◽  
pp. 202-207
Author(s):  
N. Ewusi‐Mensah ◽  
V. Logah ◽  
J. O. Fening

This paper reports the short Ã¢â‚¬Â term effects of organic and inorganic fertilizerapplications on the culturable resident bacterial and fungal properties of aFerric Acrisol in the semi Ã¢â‚¬Âdeciduous forest zone of Ghana after three continuouscropping seasons. The treatments were two compost types (i.e. 1:1compost comprising 1 part made up of Chromolaena, Stylosanthes, maizestover mixture and 1 part of cattle manure, 2:1 compost comprising 2 partsof Chromolaena, Stylosanthes, maize stover mixture and 1 part of cattle manure),cowdung, 100% NPK and a control replicated three times in a randomizedcomplete block design. The results showed that total microbial load on alogarithmic scale ranged from 4.6 cfu/g in the control to 5.4 on cowdungtreated plots. Bacterial counts on 2:1 compost applied at 5 t/ha treatedplots recorded 5% more bacteria than the 1:1 compost applied at 5 t/ha.Fungal counts in the control and inorganic treated plots were higher than theorganically amended plots. The highest and lowest microbial biomass C contentswere recorded on cowdung and 1:1 compost at 5 t/ha treated plotsrespectively. Microbial biomass N content ranged from 1.4 Ã¢â‚¬Â 8.2 mg N kg‐1soil with a mean value of 6.2 mg N kg Ã¢â‚¬Â1 soil. Microbial biomass P contentranged from 3.6 Ã¢â‚¬Â 6.3 mg P kg‐1 soil with a mean value of 5 mg P kg‐1 soil.Microbial biomass carbon to organic carbon ratio varied from 18.37 to 85.63.


2020 ◽  
Author(s):  
Marta Cattin ◽  
Marc Stutter ◽  
Alfonso Lag-Brotons ◽  
Phil Wadley ◽  
Kirk T. Semple ◽  
...  

&lt;p&gt;The application of digestate from anaerobic digestion to grassland soils is of growing interest as an agricultural practice. However, significant uncertainties surrounding the potential impacts of digestate application on processes associated with the soil microbial community remain, particularly for processes governing Carbon Use Efficiency (CUE) and the broader soil C cycle. In this research, we examined how the C:N stoichiometry of digestate and the nutrient status of soil influenced the impact of digestate application on the soil C cycle. &amp;#160;&lt;/p&gt;&lt;p&gt;Three fractions of digestate (whole [WD], solid [SD] and liquid [LD]), spanning a range of C:N, were each applied to two soils of contrasting starting nutrient status (high and low) and compared to unamended controls (Ctr). Two short-term incubations, each lasting seven days, were undertaken. In the first, applications of WD, SD and LD each achieved the same total N input to soils. In the second, digestate applications were adjusted to provide consistent total C input to soils. In each incubation, CO&lt;sub&gt;2&lt;/sub&gt;-C efflux, microbial biomass C (C&lt;sub&gt;micro&lt;/sub&gt;) and pH were determined. &amp;#160;&lt;/p&gt;&lt;p&gt;In each of the two incubations, the application of digestate significantly increased cumulative CO&lt;sub&gt;2&lt;/sub&gt;-C efflux compared to control soils. However, the precise effect of digestate application varied between the two incubations and with both soil nutrient status and digestate fraction. Microbial biomass C was largely unchanged by the treatments in both incubations. During the first incubation, soil pH decreased substantially following each digestate treatment in both soil types. A similar pattern was observed within the second incubation in the high nutrient soil. However, in contrast, soil pH increased substantially following LD and WD application to the low nutrient soil in the second incubation. Varying CUE responses are likely to be observed following the application of digestate to agricultural soils, dependent on digestate fraction, C:N ratio of the digestate, and the initial soil nutrient status. Therefore, digestate application rates and soil management must be carefully planned in order to avoid adverse impacts of digestate application to land.&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2020 ◽  
Author(s):  
Victoria Martin ◽  
Julia Wagner ◽  
Niek Speetjens ◽  
Rachele Lodi ◽  
Julia Horak ◽  
...  

&lt;p&gt;Arctic ecosystems outpace the global rate of temperature increases and are exceptionally susceptible to global warming. Concerns are raising that CO&lt;sub&gt;2&lt;/sub&gt; and CH&lt;sub&gt;4&lt;/sub&gt; released from thawing permafrost upon warming may induce a positive feedback to climate change. This is based on the assumption, that microbial activity increases with warming and does not acclimate over time. However, we lack a mechanistic understanding of carbon and nutrient fluxes including their spatial control in the very heterogeneous Arctic landscape. The objective of this study therefore was to elucidate the microbial controls over soil organic matter decomposition in different horizons of the active layer and upper permafrost. We investigated different landscape units (high-centre polygons, low-centre polygons and flat polygon tundra) in two small catchments that differ in glacial history, at the Yukon coast, Northwestern Canada.&lt;/p&gt;&lt;p&gt;In total, 81 soil samples were subjected to short-term (eight weeks) incubation experiments at controlled temperature (4 &amp;#176;C and 14 &amp;#176;C) and moisture conditions. Heterotrophic respiration was assessed weekly, whereas physiological parameters of soil microbes and their temperature response (Q&lt;sub&gt;10&lt;/sub&gt;) were determined at the end of the incubation period. Microbial growth was estimated by measuring the incorporation of &lt;sup&gt;18&lt;/sup&gt;O from labelled water into DNA and used to calculate microbial carbon use efficiencies (CUE). Microbial biomass was determined via chloroform fumigation extraction. Potential activities of extracellular enzymes involved in C, N, P and S cycling were measured using microplate fluorimetric assays.&lt;/p&gt;&lt;p&gt;Cumulative heterotrophic respiration of investigated soil layers followed the pattern organic layers &gt; upper frozen permafrost &gt; cryoturbated material &gt; mineral layers in both catchments. Microbial respiration responded strongly in all soils to warming in all soils, but the observed response was highest for organic layers and cryoturbated material at the beginning and end of the experiment. Average Q&lt;sub&gt;10&lt;/sub&gt; values at the beginning of the experiment varied between 1.7 to 4.3 with differences between horizons but converged towards Q&lt;sub&gt;10&lt;/sub&gt; values between 2.0&lt;sub&gt;min&lt;/sub&gt; to 2.9&lt;sub&gt;max&lt;/sub&gt; after eight weeks of incubation. Even though microbial biomass C did not change with warming, microbial mass specific growth was enhanced in organic, cryoturbated and permafrost soils. Overall, warming resulted in a 65% reduced CUE in organic horizons.&lt;/p&gt;&lt;p&gt;Our results show no indication for physiological acclimatization of permafrost soil microbes when subjected to 8-weeks of experimental warming. Given that the duration of the season in which most horizons are unfrozen is rarely longer than 2 months, our results do not support an acclimation of microbial activity under natural conditions. Instead, our data supports the current view of a high potential for prolonged carbon losses from tundra soils with warming by enhanced microbial activity.&lt;/p&gt;&lt;p&gt;This work is part of the EU H2020 project &amp;#8220;Nunataryuk&amp;#8221;.&lt;/p&gt;


Soil Research ◽  
2018 ◽  
Vol 56 (6) ◽  
pp. 623 ◽  
Author(s):  
Roberto Cardelli ◽  
Gabriele Giussani ◽  
Fausto Marchini ◽  
Alessandro Saviozzi

The use of the residual material from waste aerobic digestion and biochar as amendments is currently discussed in the literature concerning the positive and negative effects on soil quality. We assessed the suitability of digestate (D) from biogas production and green biochar (B) to improve soil biological activity and antioxidant capacity and investigated whether there is an interaction between digestate and biochar applied to soil in combination. In a short-term (100-days) laboratory incubation, we monitored soil chemical and biological parameters. We compared soil amendments with 1% D (D1), 5% D (D5), 1% B (B), digestate–biochar combinations (D1+B and D5+B), and soil with no amendment. In D5, CO2 production, antioxidant capacity (TEAC), and dehydrogenase activity (DH-ase) and the contents of microbial biomass C, DOC and alkali-soluble phenols increased to the highest level. The biochar increased the total organic C (TOC) and TEAC of soil but decreased DOC, CO2 production, microbial biomass C, and DH-ase. The addition of biochar to digestate reduced soluble compounds (DOC and phenols), thus limiting the amount and activity of the soil microbial biomass (CO2 production and DH-ase). After 100 days of incubation D5+B showed the highest TOC content (82.8% of the initial amount). Both applied alone and in combination with digestate, the biochar appears to enrich the soil C sink by reducing CO2 emissions into the atmosphere.


Author(s):  
P. Padmavathi ◽  
I. Y.L.N Murthy ◽  
M. Suresh

A field experiment was conducted to study the effect of nutrient management practices on the performance of soybean - safflower sequence in Vertisols. The safflower equivalent yield (2418 kg/ha-1); gross returns (Rs. 53196/ha-1); net returns (Rs 33734/ha-1) and B:C ratio (2.8) were significantly superior either with the application of NPK to the system + 5 t FYM/ha to safflower; or NPK to the system + soybean residues to safflower; or NPK to the system + both crop residues. Similar trend was also observed with respect to soil health indicators viz., soil respiration (108 mg C/g soil/10 days), microbial biomass C (284 mg C/g soil), microbial biomass N (41.9 mg N/g soil), mineral N (13.8 mg N/g soil) and net N mineralization (5.4 mg N/g soil/ 10 days). Significant improvement was observed in terms of PGPR and Trichoderma sp were found when NPK + crop residues were applied to the system.


Sign in / Sign up

Export Citation Format

Share Document