scholarly journals The Herbicidal Potential of Different Pelargonic Acid Products and Essential Oils against Several Important Weed Species

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1687
Author(s):  
Ilias Travlos ◽  
Eleni Rapti ◽  
Ioannis Gazoulis ◽  
Panagiotis Kanatas ◽  
Alexandros Tataridas ◽  
...  

There is growing consideration among farmers and researchers regarding the development of natural herbicides providing sufficient levels of weed control. The aim of the present study was to compare the efficacy of four different pelargonic acid products, three essential oils and two natural products’ mixtures against L. rigidum Gaud., A. sterilis L. and G. aparine L. Regarding grass weeds, it was noticed at 7 days after treatment that PA3 treatment (pelargonic acid 3.102% w/v + maleic hydrazide 0.459% w/v) was the least efficient treatment against L. rigidum and A. sterilis. The mixture of lemongrass oil and pelargonic acid resulted in 77% lower dry weight for L. rigidum in comparison to the control. Biomass reduction reached the level of 90% as compared to the control in the case of manuka oil and the efficacy of manuka oil and pelargonic acid mixture was similar. For sterile oat, weed biomass was recorded between 31% and 33% of the control for lemongrass oil, pine oil, PA1 (pelargonic acid 18.67% + maleic hydrazide 3%) and PA4 (pelargonic acid 18.67%) treatments. In addition, the mixture of manuka oil and pelargonic acid reduced weed biomass by 96% as compared to the control. Regarding the broadleaf species G. aparine, PA4 and PA1 treatments provided a 96–97% dry weight reduction compared to the corresponding value recorded for the untreated plants. PA2 (pelargonic acid 50% w/v) treatment and the mixture of manuka oil and pelargonic acid completely eliminated cleaver plants. The observations made for weed dry weight on the species level were similar to those made regarding plant height values recorded for each species. Further research is needed to study more natural substances and optimize the use of natural herbicides as well as natural herbicides’ mixtures in weed management strategies under different soil and climatic conditions.

Weed Science ◽  
1990 ◽  
Vol 38 (2) ◽  
pp. 113-118 ◽  
Author(s):  
S. Kent Harrison

Multiple regression and response surface plots were used to analyze the effects of common lambsquarters population density and interference duration on weed growth and soybean seed yield. Under favorable growing conditions in 1986, weed biomass production at all population densities and interference durations was four to five times that produced in 1987, under less favorable conditions. However, there was no significant treatment by year interaction for soybean seed yield reduction by common lambsquarters, and production of each kg/ha weed biomass resulted in an average soybean yield reduction of 0.26 kg/ha. Utilizing 5% yield loss as an arbitrary threshold level, the regression equation predicted a common lambsquarters density threshold of 2 plants/m of row for 5 weeks of interference after crop emergence and 1 plant/m of row for 7 weeks. Seed production by individual common lambsquarters plants was highly correlated (r=0.92) with weed dry weight, and seed production ranged from 30 000 to 176 000 seeds/plant.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 562 ◽  
Author(s):  
Mercedes Verdeguer ◽  
Luis Guillermo Castañeda ◽  
Natalia Torres-Pagan ◽  
Juan Antonio Llorens-Molina ◽  
Alessandra Carrubba

In the search of sustainable and environmentally friendly methods for weed control, there is increasing interest in essential oils (EOs) as an approach to reduce synthetic herbicide use. The phytotoxicity of Thymbra capitata, Mentha piperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus EOs against the noxious weed Erigeron bonariensis were evaluated in pre- and post-emergence assays in greenhouse conditions. The EOs were applied at 2, 4, and 8 µL/mL, with Fitoil used as emulsifier. In post-emergence, two ways of application were tested, irrigation and spraying. Several germination parameters (germination %, mean germination time, and synchrony of the germination process) were evaluated in pre-emergence tests, and the phytotoxicity level was assessed in post-emergence. In pre-emergence, all EOs significantly reduced seed germination as compared to the controls, ranking: T. capitata > E. camaldulensis > S. chamaecyparissus > M. piperita. The effectiveness of all EOs varied with the tested dose, always following the rank 2 μL < 4 μL < 8 μL, with T. capitata EO showing full effectiveness even at the lowest dose. In post-emergence, T. capitata was the most effective EO, inducing a rather complete inhibition of plantlet growth at the highest two doses. These EOs demonstrated to have good potential for the formulation of natural herbicides.


Weed Research ◽  
2017 ◽  
Vol 57 (5) ◽  
pp. 342-353 ◽  
Author(s):  
S Benvenuti ◽  
P L Cioni ◽  
G Flamini ◽  
A Pardossi

2021 ◽  
Vol 50 (1) ◽  
pp. 27-32
Author(s):  
Erna Karalija ◽  
Fatima Pustahija ◽  
Adisa Parić

UDK: 582.661.51:631.53.027]:547.913 In order to investigate the effects of seed priming with silver fir and oregano essential oils on certain important seedling characteristic and seed vigour of interesting endemic and horticultural species Silene sendtneri, an experiment was conducted based on randomized completely design with three replications. Traits such as germination rate, water content, dry weight, vigour index and photosynthetic pigments were analysed. Results revealed that the seedlings obtained with priming seeds showed increased growth, water content, vigour and photosynthetic pigment contents but decreased germination rate and dry weight compared with that obtained with non-primed seeds. Analysis of seed priming effects had demonstrated even germination rate is smaller the seedling vigour is slightly higher especially with all oregano oil treatments. We suggest that oregano oil has a potential as a priming agent for improvement of seedling synchrony, although at lower rate of germination.


Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1177
Author(s):  
Yasser S. Mostafa ◽  
Mohamed Hashem ◽  
Ali M. Alshehri ◽  
Saad Alamri ◽  
Ebrahem M. Eid ◽  
...  

This research evaluated the efficacy of essential oils in the management of cucumber powdery mildew. Essential oils of lemongrass, lemon, thyme, peppermint, abundance blend, purification blend, and thieves blend were tested in vitro and under greenhouse conditions in two separate experiments. The effects of essential oils were tested against powdery mildew disease at concentrations of 1.0–2.5 mL/L, and the consequent impact of the oils on plant growth was evaluated. Powdery mildew fungus, Podosphaera xanthii, was identified using sequencing of the ITS region. The essential oils significantly reduced disease incidence up to 77.3% compared with the positive control (p < 0.5). Moreover, the essential oils increased the plant length (up to 187 cm), leaf area (up to 27.5 cm2), fresh weight (up to 123 g), dry weight (up to 22.5 g), number of flowers (16.3), and metabolite content compared with the positive control (p < 0.5). Cell membrane injury decreased significantly in the oil-treated pants (p < 0.5), indicating the protective effect of essential oils. This study recommends the application of essential oils in an appropriate dose (2.5 mL/L) to protect cucumber plants against powdery mildew. Overdose of the oils (more than 2.5 mL/L) should be avoided due to adverse effects.


2020 ◽  
Vol 15 (7) ◽  
pp. 1934578X2093232
Author(s):  
Opeyemi N. Avoseh ◽  
Isiaka A. Ogunwande ◽  
Gbenga O. Ojenike ◽  
Fanyana M. Mtunzi

The volatile constituents, toxicity, antinociception, and anti-inflammatory activities of the essential oil obtained from the leaf of Mucuna pruriens utilis collected from Nigeria are reported. The essential oil was analyzed comprehensively utilizing gas chromatography (GC)-flame ionization detector and GC coupled with mass spectrometry (MS) using the HP-5 column. The antinociceptive and anti-inflammatory assays were analyzed by a hot plate, formalin, and carrageenan-induced edema assays, respectively. The essential oil was obtained in a yield of 0.2% (v/w) calculated on a dry weight basis. A total of 36 compounds representing 94.8% of the oil contents were identified. The oil contained a high content of ( E)-2-hexenal (19.0%), linalool (8.9%), 1-hexanol (6.6%), and trans-dehydroxylinalool oxide (5.2%). The analgesic property of the essential oil was slightly significant ( P < 0.5) only at the third hour for the 400 mg/kg while other doses are less active. The rate of inhibition was moderate (24.1%-54%) during the analgesic phase of the formalin assay. The rate of inhibition at the anti-inflammatory phases of both formalin and carrageenan were significantly high (100%) and P < 0.001 for all the doses during the reaction duration. The potential proinflammatory mechanism might be due to effects on several proinflammatory mediators, including, histamine, serotonin, and bradykinin, and the ability of the essential oils to act as centrally mediated opioid analgesic. Mucuna pruriens essential oils displayed a high anti-inflammation potential and can be used as a potential centrally mediated opioid antagonist against analgesia.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 475 ◽  
Author(s):  
Frabboni ◽  
Tarantino ◽  
Petruzzi ◽  
Disciglio

Chamomile (Matricaria chamomilla L.) is a well-known medicinal plant species in which the products requested from the market are those that are derived from the organic system. The study was conducted to assess the allelopathic effects, as natural herbicides, of two essential oils extracted from oregano (Origanum vulgare L.) and rosemary (Rosmarimum officinalis L.), with the objective of exploring the possibility of their utilization for future weed management. A field experiment was conducted over two seasons, when the infestation of 15 different weed species was detected. Each essential oil was applied at two different concentrations (50% diluted and undiluted), three times during the chamomile crop under an organic farm system. The results demonstrated that the germination of different weed species was affected differently by the type of essential oils and especially by their concentrations. The undiluted oils inhibited most of the germination of several weed species, highlighting a significantly higher percentage of Weed Control Efficiency (WCE) and suggesting the potential to be used as bio-herbicides. Bioherbicidal weed control methods could offer an advantage with respect to hand weeding, particularly from an economic point of view.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 471B-471
Author(s):  
D.J. Makus

In Spring 1998, two sweet corn (Zea mays var. rugosa) cultivars were grown under three tillage systems, conventional cultivation, ridge tillage (RT), and no tillage (NT), which had been in continuous management since Fall 1994. Nitrogen (as NH4NO3), the only fertilizer used, was applied twice at 60 kg/ha. Sweet corn yields were not influenced by tillage system, but average ear weights tended to be smaller under NT (P < 0.17). Ear quality attributes, which included ear weight, length, diameter, dry matter, and incidence of earworm damage, were greater in the later-maturing `G-90' cultivar than in `Sensor'; but tillage system had no influence on these attributes. Cultivars supported different weed species underneath their canopies. `Sensor' allowed more light penetration and sustained higher weed biomass than did the taller `G-90' plants. Weed biomass was higher under RT and NT. Seasonal soil moisture was lowest in the RT plots, but only in the 0- to 15-cm profile. Soil temperatures (unreplicated) at the 15-cm depth were similar between cultivars and tillage treatments over the growing season. The earlier-maturing `Sensor' generally accumulated more ear mineral nutrients (P, S, NO3, Ca, Na, Zn, Mn, Al, and B; dry weight basis), but had lower dry matter (percentage) than did `G-90'. Cumulative nutrient levels tended to be lowest in NT-grown ears (P < 0.08). Soil sampled at 0- to 5-, 10- to 15-, and 25- to 30-cm depths generally had higher concentrations of nutrients toward the surface, and NT soils had the steepest nutrient gradients, with the exception of Na and NO3. Total soil salts were reduced by RT and NT, but C: N ratio remained unchanged between tillage systems.


2020 ◽  
Vol 36 ◽  
Author(s):  
Marcia Ferreira Queiroz ◽  
Meridiana Araujo Gonçalves Lima ◽  
Josineide Edinalva Pereira ◽  
Karol Alves Barroso ◽  
Cristiane Domingos Da Paz ◽  
...  

The aim of this study was to analyze the effect of essential oils on the control of soft rot of kale. Clove essential oil at 0.25%, lemongrass and palmarosa essential oils at 0.5%, melaleuca and orange essential oils at 0.75%, bergamot, rosemary, sage and ginger essential oils at 1% were evaluated for the in vitro inhibition of Pectobacterium carotovorum subsp. brasiliensis (Pcb) and control of soft rot of kale, sprayed 72 hours before or seven hours after inoculation. Clove, citronella, bergamot, rosemary, palmarosa, sage, melaleuca, and lemongrass oils completely inhibited the growth of Pcb. Lemongrass oil (0.5%) caused 0% of disease incidence (INC), providing 100% of disease control in both periods of inoculation. Clove oil (0.25%) showed a lower INC (25%) when applied after inoculation, providing a control percentage of 71.42%. The lemongrass and clove essential oils were analyzed by GC/FID (Gas Chromatography – Flame Ionization Detector) and by GC/MS (Gas Chromatography /Mass Spectrometer). The major components were eugenol (91,9%) for clove oil and citral, isometric mixture of neral (34,1%) and geranial (42,9%) for lemongrass oil. The Minimum inhibitory concentration (MIC) of lemongrass, clove oils and their major components (citral and eugenol, respectively) was determined by using a broth macrodilution technique, as well as they were evaluated at different concentrations on the control of soft rot of kale, sprayed according descriptions above. The MIC was 0.03125% for citral, and 0.0625 and 0.125% for lemongrass and clove oils, respectively. Eugenol didn't show MIC. Lemongrass oil at 0.125% (post-inoculation) and citral at 0.125% (pre and post-inoculation) provided the highest percentages of disease control (33.33, 50, and 100%, respectively). Clove oil at 0.125% (post-inoculation) showed better effectiveness than eugenol (0.25%), providing a percentage of disease control of 16.67%. Lemongrass and clove essential oils were the most effective in control of soft rot of kale, suggesting that these oils have a potential to be used as antibacterial agents.


2019 ◽  
Vol 15 (1) ◽  
pp. 59
Author(s):  
Muhammad Mujibur Rahman ◽  
Akhmad Rizalli Saidy ◽  
Chatimatun Nisa

One of the problems in phosphate nutrient fertilization is a low level of efficiency, so the application of arbuscular mycorrhiza is often done to increase phosphate uptake. In this study mycorrhizal was applied to shallots which were given P fertilizer to assess the effect of mycorrhizal applications on growth, yield, and phosphate uptake. This research was carried out at the Faculty of Agriculture's Greenhouse of the University of Lambung Mangkurat Banjarbaru from March to May 2016. The seed of shallot was grown on 5 kg of soil and quartz sand (3:1) fertilized by P (0, 50, 100, 150, 200 and 250 kg SP-36 ha-1) and applied with mycorrhiza (without and with 10 g of plant-1 mycorrhizal inoculum) at planting. The observations made after 75 days after planting showed that the application of arbuscular mycorrhiza was effected to improve several observation variables, namely plant dry weight, bulb dry weight, phosphate nutrient uptake, and phosphate efficiency. The application of mycorrhiza at phosphate doses of 250 kg SP-36 ha-1 can increase plant dry weight by 97% and bulb dry weight by 203% compared to without mycorrhiza. Whereas the application of mycorrhiza at a phosphate dose of 100 kg SP-36 ha-1 is the best and most efficient treatment to increase phosphate nutrient uptake and phosphate efficiency. The results of this study show that the application of mycorrhizal can increase nutrient uptake of phosphate which ultimately increases the growth and production of shallot plants. 


Sign in / Sign up

Export Citation Format

Share Document