scholarly journals Economic Sustainability and Riskiness of Cover Crop Adoption for Organic Production of Corn and Soybean in Northern Italy

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 766
Author(s):  
Simone Severini ◽  
Maurizia Castellari ◽  
Daniele Cavalli ◽  
Luciano Pecetti

Techniques based on terminated cover crops are proposed in organic agriculture instead of traditional inter-row tillage for weed control in subsequent grain crops. We estimated the profitability and evaluated the riskiness of novel techniques compared to the traditional one. Two-year yield data from three on-farm trials for corn and one for soybean in northern Italy were combined with cost and revenue data to calculate and compare gross margin distributions of different techniques in each crop. The relative ranking of techniques and the associated riskiness was assessed by these distributions using the stochastic dominance principles. Corn yield response on cover crop-based treatments was very variable, making the adoption of cover crops overall less sustainable from an economic point of view than the traditional tillage-based technique. Further research in this sense was nonetheless warranted by observed exceptions. Hairy vetch cover crop tended to higher profitability and lower riskiness than crimson clover for subsequent corn cropping. Specific analyses suggested nil or slightly negative nitrogen fertilizer effects of legume residues on corn. Results indicated that profitability could be maintained with cover crops in soybean compared to the traditional practice. In particular, triticale tended to provide better economic performances than inter-row tillage.

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 524d-524
Author(s):  
Wayne F. Whitehead ◽  
Bharat P. Singh

The goal of this study was to evaluate how tomato yield, vegetative dry matter, leaf area index (LAI), and photosynthesis (Pn) responded to winter cover crop and recommended fertilizer N rates. The following winter/spring fertility treatments were applied using randomized complete block design with four replications: 1) 0 N winter /0 N spring, 2) 0 N winter/90 kg·ha–1 N spring, 3) 0 N winter/180 kg·ha–1 N spring, 4) 0 N winter + abruzi rye/0 N spring, 5) 0 N winter + hairy vetch/0 N spring, and 6) 0 N winter + crimson clover/0 N spring. In Spring 1997, `Mountain Pride' tomatoes were transplanted in all plots. Whole plant dry matter, LAI and Pn were measured at flowering, fruiting and prior to senescence, while seasonal yield was compiled over 6 weeks. Tomatoes preceded by Vetch produced highest plant dry matter (243.0 g/plant) prior to senescence, highest LAI (3.07) at fruiting and highest P (8.98 μmol CO2/m2 per s) during flowering. Total yield were highest (60.9 Mg·ha–1) at 180 kg·ha–1 N and lowest (35.3 Mg·ha–1) in control. Supplemental N from legume and grain cover crops affected plant dry weight, LAI, Pn, and yield comparable to those receiving synthetic N. Results of this study indicate that cover crop treatments were as effective as N fertilizer in supporting tomato yield, vegetative growth, LAI, and photosynthesis.


HortScience ◽  
1996 ◽  
Vol 31 (5) ◽  
pp. 748d-748
Author(s):  
Jeanine M. Davis ◽  
D.R. Decoteau ◽  
G.D. Hoyt ◽  
K.D. Batal ◽  
D.C. Sanders ◽  
...  

Tomatoes and beans were grown in rotation for 4 years with three cover crop treatments (bareground, wheat, and crimson clover) and three nitrogen rates (0, 60, and 120 kg N/ha). Over the course of the study, when no additional N was provided, lowest yields of tomatoes and beans were obtained with the wheat cover crop. With the highest N rate, however, there was little difference in yields of beans or tomatoes with any of the cover crop treatments. Considering the benefits associated with the use of cover crops, it is encouraging to see that with proper N amendment, yields obtained with cover crop systems can be comparable to conventional bareground systems.


1989 ◽  
Vol 4 (2) ◽  
pp. 65-70 ◽  
Author(s):  
Stephen L. Ott ◽  
William L. Hargrove

AbstractWinter legume cover crops are receiving increasing attention from agronomists and farmers as a source of nitrogen for summer crops. While agronomists are continually providing new technical information on using legumes as a nitrogen source, little is known on the economics of their use. Previous economic research on legume cover crops has focused mainly on budgeting analysis. In the present work, a twofactorial experiment was designed to test the use of legumes as a nitrogen source for corn(Zea mays L.)in north Georgia. The first factor was winter cover crop with treatments being crimson clover(Trifolium incarnatumL.),hairy vetch(Vicia villosaRoth),wheat(Triticum aestivumL.), and no cover crop or winter fallow. The second factor was nitrogen (N) fertilizer applied at five different rates: 0, 25, 50, 100, or 200 pounds per acre. For each combination of the two factors, mean yield and yield variance were determined. Results indicated that legume cover crops increased both average corn yield and yield variance. The greater yield variance from the use of legume cover crops increases economic risk. Risk-averse farmers must be compensated for increased profit variance by higher average profits. A safety first method was used to evaluate the tradeoff between average profit and profit variance for the risk-averse individual The results showed that hairy vetch with 50 pounds of N per acre was the best combination of cover crop and fertilizer rate for risk-neutral farmers. For risk-averse farmers, hairy vetch without any nitrogen fertilizer is preferred.


2016 ◽  
Vol 26 (5) ◽  
pp. 604-613 ◽  
Author(s):  
John E. Beck ◽  
Michelle S. Schroeder-Moreno ◽  
Gina E. Fernandez ◽  
Julie M. Grossman ◽  
Nancy G. Creamer

Summer cover crop rotations, compost, and vermicompost additions can be important strategies for transition to organic production that can provide various benefits to crop yields, nitrogen (N) availability, and overall soil health, yet are underused in strawberry (Fragaria ×ananassa) production in North Carolina. This study was aimed at evaluating six summer cover crop treatments including pearl millet (Pennisetum glaucum), soybean (Glycine max), cowpea (Vigna unguiculata), pearl millet/soybean combination, pearl millet/cowpea combination, and a no cover crop control, with and without vermicompost additions for their effects on strawberry growth, yields, nutrient uptake, weeds, and soil inorganic nitrate-nitrogen and ammonium-nitrogen in a 2-year field experiment. Compost was additionally applied before seeding cover crops and preplant N fertilizer was reduced by 67% to account for organic N additions. Although all cover crops (with compost) increased soil N levels during strawberry growth compared with the no cover crop treatment, cover crops did not impact strawberry yields in the first year of the study. In the 2nd year, pearl millet cover crop treatments reduced total and marketable strawberry yields, and soybean treatments reduced marketable strawberry yields when compared with the no cover crop treatment, whereas vermicompost additions increased strawberry biomass and yields. Results from this study suggest that vermicompost additions can be important sustainable soil management strategies for transitional and certified organic strawberry production. Summer cover crops integrated with composts can provide considerable soil N, reducing fertilizer needs, but have variable responses on strawberry depending on the specific cover crop species or combination. Moreover, these practices are suitable for both organic and conventional strawberry growers and will benefit from longer-term studies that assess these practices individually and in combination and other benefits in addition to yields.


1988 ◽  
Vol 34 (3) ◽  
pp. 201-206 ◽  
Author(s):  
C. S. Rothrock ◽  
W. L. Hargrove

The influence of winter legume cover crops and of tillage on soil populations of fungal genera containing plant pathogenic species in the subsequent summer sorghum crop were examined in field studies. Legume cover crops significantly increased populations of Pythium spp. throughout the sorghum crop compared with a rye cover crop or no cover crop. This stimulation of the populations of Pythium spp. was not solely due to colonization of cover-crop residue, as populations were significantly greater at the time the legume cover crop was desiccated. Removal of aboveground residue generally decreased populations of Pythium spp. in soil. Incorporation of residue by tillage increased populations of Pythium spp. at some sampling dates. Legumes differed in the magnitude of stimulation, with hairy vetch stimulating Pythium spp. more than crimson clover. Cover crop treatments did not consistently influence soil populations of Fusarium spp., Rhizoctonia solani, Rhizoctonia-like binucleate fungi, or Macrophomina phaseolina. Macrophomina phaseolina populations were significantly greater under no tillage.


2001 ◽  
Vol 1 ◽  
pp. 22-29 ◽  
Author(s):  
S. Kuo ◽  
B. Huang ◽  
R. Bembenek

Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha-1, referred to as N0, N1, N2, and N3, respectively) applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N0, N2, and N3treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency’s drinking water standard of 10 mg N l�1 even at recommended N rate for corn in this region (coastal Pacific Northwest). In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake) correlated well with average NO3-N during the high N leaching period for vetch cover crop treatment and for the control without the cover crops. The correlation, however, failed for other cover crops largely because of variable effectiveness of the cover crops in reducing NO3leaching during the 5 years of this study. Further research is needed to determine if relay cover crops planted into standing summer crops is a more appropriate approach than fall seeding in this region to gain sufficient growth of the cover crop by fall. Testing with other main crops that have earlier harvest dates than corn is also needed to further validate the effectiveness of the bicultures to increase soil N availability while protecting the water quality.


2018 ◽  
Vol 32 (3) ◽  
pp. 227-235 ◽  
Author(s):  
Matheus G. Palhano ◽  
Jason K. Norsworthy ◽  
Tom Barber

AbstractCover crop acreage has substantially increased over the last few years due to the intent of growers to capitalize on federal conservation payments and incorporate sustainable practices into agricultural systems. Despite all the known benefits, widespread adoption of cover crops still remains limited due to potential cost and management requirements. Cover crop termination is crucial, because a poorly controlled cover crop can become a weed and lessen the yield potential of the current cash crop. A field study was conducted in fall 2015 and 2016 at the Arkansas Agricultural Research and Extension Center in Fayetteville to evaluate preplant herbicide options for terminating cover crops. Glyphosate-containing treatments controlled 97% to 100% of cereal rye and wheat, but glyphosate alone controlled less than 57% of legume cover crops. The most effective way to control hairy vetch, Austrian winterpea, and crimson clover with glyphosate resulted from mixtures of glyphosate with glufosinate, 2,4-D, and dicamba. Higher rates of auxin herbicides improved control in these mixtures. Glufosinate alone or in mixture controlled legume cover crops 81% or more. Paraquat plus metribuzin was effective in terminating both cereal and legume cover crops, with control of cereal cover crops ranging from 87% to 97% and control of legumes ranging from 90% to 96%. None of these herbicides or mixtures adequately controlled rapeseed.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Kipling S. Balkcom ◽  
Kira L. Bowen

Corn (Zea mays L.) production in the Southeast can be negatively impacted by erratic summer rainfall and drought-prone, coarse-textured soils, but irrigation combined with conservation tillage and cover crops may support greater plant densities arranged in different row configurations to improve yield. We examined five site-years of data across two soil types in Alabama to compare corn yields in a conservation system across three plant densities for single- and twin-row configurations in dryland and irrigated moisture regimes. Treatments were arranged with a split plot treatment restriction in a RCB design with three replications. Main plots were irrigation level (no irrigation and irrigation), and subplots were a factorial arrangement of three plant densities (5.9, 7.4, and 8.9 plants m−2) and row configurations (single and twin). A moisture environment (low and moderate) variable, defined by growing season rainfall, was used to average over site-years. In general, irrigation in the moderate-moisture environment improved each measured variable (plant height, stover yield, corn yield, and test weight) and decreased grain N concentration and aflatoxin levels compared to the low-moisture environment with no irrigation. Benefits of increased rainfall and irrigation to reduce soil moisture stress across drought-prone soils were evident. Pooled results across all site-years indicated no yield response as plant density increased, but greater yields were observed with the greatest plant densities in the moderate-moisture environments. No advantage for twin-row corn production was observed across five site-years in Alabama, which indicates either row configuration can be successfully adopted.


2017 ◽  
Vol 31 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Cody D. Cornelius ◽  
Kevin W. Bradley

The recent interest in cover crops as component of Midwest corn and soybean production systems has led to the need for additional research, including the effects of residual corn and soybean herbicide treatments on fall cover crop establishment. Field studies were conducted in 2013, 2014, and 2015 in Columbia, Missouri to investigate the effects of common residual herbicides applied in corn and soybean on establishment of winter wheat, tillage radish, cereal rye, crimson clover, winter oat, Austrian winter pea, Italian ryegrass, and hairy vetch. Cover crops were evaluated for stand and biomass reduction 28 d after emergence (DAE). Rainfall from herbicide application to cover crop seeding date was much greater in 2014 and 2015, which resulted in less carryover in these years compared to 2013. When averaged across all herbicides evaluated in these experiments, the general order of sensitivity of cover crops to herbicide carryover, from greatest to least was Austrian winter pea=crimson clover>oilseed radish>Italian ryegrass>hairy vetch>wheat >winter oat>cereal rye. Cereal rye had the fewest instances of biomass or stand reduction with only four out of the 27 herbicides adversely effecting establishment. Pyroxasulfone consistently reduced Italian ryegrass and winter oat biomass at least 67% in both the corn and soybean experiments. In the soybean experiment, imazethapyr- and fomesafen-containing products resulted in severe stand and biomass reduction in both years while flumetsulam-containing products resulted in the greatest carryover symptoms in the corn experiment. Results from these experiments suggest that several commonly used corn and soybean herbicides have the potential to hinder cover crop establishment, but the severity of damage will depend on weather, cover crop species, and the specific herbicide combination.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1081 ◽  
Author(s):  
Oladapo Adeyemi ◽  
Reza Keshavarz-Afshar ◽  
Emad Jahanzad ◽  
Martin Leonardo Battaglia ◽  
Yuan Luo ◽  
...  

Corn (Zea mays L.) grain is a major commodity crop in Illinois and its production largely relies on timely application of nitrogen (N) fertilizers. Currently, growers in Illinois and other neighboring states in the U.S. Midwest use the maximum return to N (MRTN) decision support system to predict corn N requirements. However, the current tool does not factor in implications of integrating cover crops into the rotation, which has recently gained attention among growers due to several ecosystem services associated with cover cropping. A two-year field trail was conducted at the Agronomy Research Center in Carbondale, IL in 2018 and 2019 to evaluate whether split N application affects nitrogen use efficiency (NUE) of corn with and without a wheat (Triticum aestivum L.) cover crop. A randomized complete block design with split plot arrangements and four replicates was used. Main plots were cover crop treatments (no cover crop (control) compared to a wheat cover crop) and subplots were N timing applications to the corn: (1) 168 kg N ha−1 at planting; (2) 56 kg N ha−1 at planting + 112 kg N ha−1 at sidedress; (3) 112 kg N ha−1 at planting + 56 kg N ha−1 at sidedress; and (4) 168 kg N ha−1 at sidedress along with a zero-N control as check plot. Corn yield was higher in 2018 than 2019 reflecting more timely precipitation in that year. In 2018, grain yield declined by 12.6% following the wheat cover crop compared to no cover crop control, indicating a yield penalty when corn was preceded with a wheat cover crop. In 2018, a year with timely and sufficient rainfall, there were no yield differences among N treatments and N balances were near zero. In 2019, delaying the N application improved NUE and corn grain yield due to excessive rainfall early in the season reflecting on N losses which was confirmed by lower N balances in sidedressed treatments. Overall, our findings suggest including N credit for cereals in MRTN prediction model could help with improved N management in the Midwestern United States.


Sign in / Sign up

Export Citation Format

Share Document