scholarly journals Carbohydrate and Amino Acid Dynamics during Grain Growth in Four Temperate Cereals under Well-Watered and Water-Limited Regimes

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1516
Author(s):  
Ana María Méndez-Espinoza ◽  
Miguel Garriga ◽  
Sinda Ben Mariem ◽  
David Soba ◽  
Iker Aranjuelo ◽  
...  

Grain development in cereals depends on synthesis and remobilisation compounds such as water-soluble carbohydrates (WSCs), amino acids (AAs), minerals and environmental conditions during pre- and post-anthesis. This study analyses the impact of water stress on metabolite (WSCs, AAs and nitrogen) dynamics between the source (leaves and stems) and sink (grain) organs in triticale, bread wheat, durum wheat and barley. Plants were grown in glasshouse conditions under well-watered (WW) and water-limited (WL) regimes (from flag leaf fully expanded until maturity). The results showed that the stem WSC content and the apparent mobilisation of WSC to the grain were much higher in triticale and were associated with its larger grain size and grain number. In the four cereals, grain weight and the number of kernels per spike were positively associated with stem WSC mobilisation. After anthesis, the AA concentration in leaves was much lower than in the grain. In grain, the main AAs in terms of concentration were Asn, Pro and Gln in triticale, bread, and durum wheat, and Asn, Pro and Val in barley. The water-limited regime reduced grain weight per plant in the four cereal species, but it had no clear effects on WSC content and AAs in leaves and grain. In general, triticale was less affected by WL than the other cereals.

2021 ◽  
Vol 22 (4) ◽  
pp. 2053
Author(s):  
Judit Bányai ◽  
Marco Maccaferri ◽  
László Láng ◽  
Marianna Mayer ◽  
Viola Tóth ◽  
...  

A detailed study was made of changes in the plant development, morphology, physiology and yield biology of near-isogenic lines of spring durum wheat sown in the field with different plant densities in two consecutive years (2013–2014). An analysis was made of the drought tolerance of isogenic lines selected for yield QTLs (QYld.idw-2B and QYld.idw-3B), and the presence of QTL effects was examined in spring sowings. Comparisons were made of the traits of the isogenic pairs QYld.idw-3B++ and QYld.idw-3B−− both within and between the pairs. Changes in the polyamine content, antioxidant enzyme activity, chlorophyll content of the flag leaf and the normalized difference vegetation index (NDVI) of the plot were monitored in response to drought stress, and the relationship between these components and the yield was analyzed. In the case of moderate stress, differences between the NIL++ and NIL−− pairs appeared in the early dough stage, indicating that the QYld.idw-3B++ QTL region was able to maintain photosynthetic activity for a longer period, resulting in greater grain number and grain weight at the end of the growing period. The chlorophyll content of the flag leaf in phenophases Z77 and Z83 was significantly correlated with the grain number and grain weight of the main spike. The grain yield was greatly influenced by the treatment, while the genotype had a significant effect on the thousand-kernel weight and on the grain number and grain weight of the main spike. When the lines were compared in the non-irrigated treatment, significantly more grains and significantly higher grain weight were observed in the main spike in NIL++ lines, confirming the theory that the higher yields of the QYld.idw-3B++ lines when sown in spring and exposed to drought stress could be attributed to the positive effect of the “Kofa” QTL on chromosome 3B.


2016 ◽  
Vol 43 (10) ◽  
pp. 919 ◽  
Author(s):  
Hamid Shirdelmoghanloo ◽  
Daniel Cozzolino ◽  
Iman Lohraseb ◽  
Nicholas C. Collins

Short heat waves during grain filling can reduce grain size and consequently yield in wheat (Triticum aestivum L.). Grain weight responses to heat represent the net outcome of reduced photosynthesis, increased mobilisation of stem reserves (water-soluble carbohydrates, WSC) and accelerated senescence in the grain. To compare their relative roles in grain weight responses under heat, these characteristics were monitored in nine wheat genotypes subjected to a brief heat stress at early grain filling (37°C maximum for 3 days at 10 days after anthesis). Compared with the five tolerant varieties, the four susceptible varieties showed greater heat-triggered reductions in final grain weight, grain filling duration, flag leaf chla and chlb content, stem WSC and PSII functionality (Fv/Fm). Despite the potential for reductions in sugar supply to the developing grains, there was little effect of heat on grain filling rate, suggesting that grain size effects of heat may have instead been driven by premature senescence in the grain. Extreme senescence responses potentially masked stem WSC contributions to grain weight stability. Based on these findings, limiting heat-triggered senescence in the grain may provide an appropriate focus for improving heat tolerance in wheat.


2016 ◽  
Vol 61 (2) ◽  
pp. 113-125
Author(s):  
Gordana Brankovic ◽  
Dejan Dodig ◽  
Desimir Knezevic ◽  
Vesna Kandic ◽  
Jovan Pavlov

The research was aimed at examining variability, variance components, broadsense heritability (h2), expected genetic advance of thousand grain weight (TGW) and grain number per spike (GNS) of 15 genotypes of bread wheat and 15 genotypes of durum wheat. Field trials were carried out during 2010-2011 and 2011-2012 growing seasons at the three sites: Rimski Sancevi, Zemun Polje and Padinska Skela. Results of this investigation showed that the genetic component of variance (?2 g) was predominant for TGW of bread and durum wheat and for GNS of bread wheat. The genotype ? environment interaction (?2 ge) component of phenotypic variance was 8.72 times higher than ?2 g for GNS of durum wheat and pointed to the greater instability of durum wheat genotypes. h2 was very high (>90%) for TGW and GNS of bread wheat, high for TGW of durum wheat - 87.3% and low for GNS of durum wheat - 39.5%. Considering the high values obtained for h2 - 96.4% and the highest value for expected genetic advance as percent of mean (GAM) - 19.3% for TGW of bread wheat, the success of selection for desired values of this yield component can be anticipated. The success of selection cannot be predicted for GNS of durum wheat due to low values obtained for h2 and GAM of 39.5% and 2.8%, respectively.


1994 ◽  
Vol 21 (3) ◽  
pp. 255 ◽  
Author(s):  
IF Wardlaw ◽  
J Willenbrink

Wheat plants grown under non-stress conditions at a dayhight temperature of 18/13�C under glasshouse conditions from head emergence to maturity showed a maximum accumulation of water-soluble, non-structural carbohydrates 20-25 days after anthesis. This storage was largely as fructans with the timing and amount of storage and mobilisation varying between cultivars, although the maximum concentration (fructose equivalents per unit stem fresh weight) was similar in all cultivars. The main storage in the culm was located in the lower part of the peduncle enclosed by the flag leaf sheath, in the penultimate internode and for one cultivar also in the flag leaf sheath. 14CO2 pulse-chase studies showed that there was a considerable delay in the incorporation of flag leaf assimilates into stem fructans, a delay probably associated with transfer and metabolic processes in the stem itself. At anthesis, when soluble carbohydrates were rapidly accumulating in the culm, the level of activity of sucrose synthase (SS) in the penultimate internode was much greater than that of sucrose phosphate synthase (SPS). The activity of SS declined rapidly as active storage ceased. This pattern was the reverse of that found in the leaf where SPS, rather than SS, was initially high and declined towards maturity. These changes are discussed in relation to the possible role of sucrose synthesising enzymes, particularly SS, in the accumulation and mobilisation of stem reserves in wheat.


2021 ◽  
Author(s):  
Arun Bs ◽  
Mukunda Gogoi ◽  
Prashant Hegde ◽  
Suresh Babu

<p>The rapid changes in the pattern of atmospheric warming over the Himalayas, along with severe degradation of Himalayan glaciers in recent years suggest the inevitability of accurate source characterization and quantification of the impact of aerosols on the Himalayan atmosphere and snow. In this regard, extensive study of the chemical compositions of aerosols at two distinct regions, Himansh (32.4<sup>ᴼ</sup>N, 77.6<sup>ᴼ</sup>E, ~ 4080 m a.s.l) and Lachung (27.4<sup>ᴼ</sup>N, 88.4<sup>ᴼ</sup>E, ~ 2700 m a.s.l), elucidates distinct signatures of the sources and types of aerosols prevailing over the western and eastern parts of Himalayas. The mass-mixing ratios of water-soluble (Na<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, Cl-, SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup>, MSA<sup>-</sup>, C<sub>2</sub>O<sub>4</sub><sup>2-</sup>), carbonaceous (EC, OC, WSOC) and selected elemental (Al, Fe, Cu, Cr, Ti) species depicted significant abundance of mineral dust aerosols (~ 67%), along with a significant contribution of carbonaceous aerosols (~ 9%) during summer to autumn (August-October) over the western Himalayan site. On the other hand, the eastern Himalayan site is found to be dominant of OC (~ 53% in winter) followed by SO<sub>4</sub><sup>2-</sup> (as high as 37% in spring) and EC (8-12%) during August to February. However, OC/EC and WSOC/OC ratios showed significantly higher values over both the sites (~ 12.5, and 0.56 at Himansh; ~ 5.7 and ~ 0.74 at Lachung) indicating the secondary formation of organic aerosols via chemical aging over both the sites. The enrichment factors estimated from the concentrations of trace elements over the western Himalayan site revealed the influence of anthropogenic source contribution from the regional hot-spots of Indo-Gangetic Plains, in addition to that of west Asia and the Middle East countries. On the other hand, the source apportionment of aerosols (based on positive matrix factorization - PMF model) over the eastern Himalayas demonstrated the biomass-burning aerosols (25.94%), secondary formation of aerosols via chemical aging (15.94%), vehicular and industrial emissions (20.54%), primary emission sources associated with mineral dust sources (22.28%) and aged secondary aerosols (15.31%) as the major sources of aerosols. Due to abundant anthropogenic source impacts at the eastern Himalayan site, the atmospheric forcing is most elevated in winter (13.4 ± 4.4 Wm<sup>-2</sup>), which is more than two times the average values seen at the western Himalayan region during the study period. The heavily polluted eastern part of the IGP is a potential anthropogenic source region contributing to the aerosol loading at the eastern Himalayas. These observations have far-reaching implications in view of the role of aerosols on regional radiative balance and their impact on snow/glacier coverage.</p>


1970 ◽  
Vol 50 (1) ◽  
pp. 9-14 ◽  
Author(s):  
C. H. CHEN ◽  
W. BUSHUK

Solubility characteristics and amino acid composition of the endosperm proteins of one line of Triticale, its durum wheat and rye parent cultivars, and one cultivar of hard red spring wheat were compared. Quantitative distribution of the soluble protein fractions and amino acid compositions showed that the proteins of Triticale are intermediate in these properties between analogous properties of the proteins of its durum wheat and rye parents. The major differences between the hard red spring wheat and the other three species were its lower content of water-soluble proteins and higher content of insoluble or gluten proteins. This appears lo be the main reason for the superior breadmaking quality of the hard red spring wheat cultivar compared with the other species used in this study.


2010 ◽  
Vol 56 (No. 5) ◽  
pp. 218-227 ◽  
Author(s):  
A. Madani ◽  
A. Shirani-Rad ◽  
A. Pazoki ◽  
G. Nourmohammadi ◽  
R. Zarghami ◽  
...  

The experiments were laid out to understand the mechanisms causing yield limitations imposed by post-anthesis water and nitrogen deficiencies in plants with modified source-sink ratios. Two soil-water regimes were allotted to the main plots. At anthesis, three levels of N were applied: none, 25% and 50% of total the N supply. Spike-halving caused reduction in grain yield at both water regimes and all N supply levels, showing that the reduction in grain number can not be compensated by a higher individual grain weight. Sink reduction by trimming 50% of the spikelets reduced grain number per ear by 38.5% and increased individual grain weight by 12.0%, which shows the plasticity in grain weight and grain set of wheat if sufficient assimilates are available. Additional nitrogen supply at anthesis had no significant effect on the total aboveground biomass, but increased grain yield through more allocation of dry matter to grains. Our findings suggest that for rainfed wheat with optimum N supply and supplemental irrigation, wheat growers should choose cultivars with a high grain number per ear and manage the crop to increase grain number per unit of land (sink capacity).


2006 ◽  
Vol 57 (2) ◽  
pp. 227 ◽  
Author(s):  
Daniel F. Calderini ◽  
M. P. Reynolds ◽  
G. A. Slafer

Source limitation during grain filling is important for both management and breeding strategies of grain crops. There is little information on the sensitivity of grain weight of temperate cereals to variations in source–sink ratios, and no studies are available on the comparative behaviour of temperate cereals growing together in the same experiment. The objective of the current study was to evaluate, under field conditions, the response of grain weight to different source–sink ratios during grain filling in high-yielding cultivars of bread wheat, durum wheat, and triticale at 2 contrasting locations. Two experiments were carried out at C. Obregon and El Batan in Mexico. In each location, 6 genotypes (2 bread wheat, 2 durum wheat, 2 triticale) were evaluated. A week after anthesis, 2 source–sink (control and halved spikes) treatments were imposed. Location and genotype significantly (P < 0.01) affected grain yield and components. Significant grain weight increases (P < 0.05) were found only in 2 cases in El Batan. The highest response of 17% was found in triticale, with less than 10% in most of the other genotypes. The effect of genotype and location is discussed.


1970 ◽  
Vol 36 (1) ◽  
pp. 1-12
Author(s):  
Alpay Balkan ◽  
Temel Gençtan ◽  
Oguz Bilgin

This research was carried out in experimental field of Field Crops Department of Agricultural Faculty of Namik Kemal University in randomized split block design with three replications per treatment during 2004-2005 and 2005-2006. The objective of this study was to find out the contribution rates of awn, flag leaf, 1st upper leaf blade, 2nd upper leaf blade and other leaf blades to main yield components in three durum wheat cultivars (cv. Kiziltan-91, Kunduru-1149, and Yelken-2000). The results of this experiment showed that removal of awn, flag leaf, 1st upper leaf blade, 2nd upper leaf blade, and other leaf blades reduced significantly spike weight, number of grains per spike, grain weight per spike, and 1000-grain weight except the number of spikelets per spike. It was concluded that the organs play an important role in grain yield in durum wheat during grain filling stage.   Keywords: Photosynthetic organs; yield components; durum wheat.DOI: http://dx.doi.org/10.3329/bjar.v36i1.9224 BJAR 2011; 36(1): 1-12


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2269
Author(s):  
Widad Al Azzawi ◽  
Muhammad Bilal Gill ◽  
Foad Fatehi ◽  
Meixue Zhou ◽  
Tina Acuña ◽  
...  

Potassium deficiency is one of the major issues affecting crop production around the globe. Giving the high cost of potassium fertilizers and environmental concerns related to inappropriate fertilization practices, developing more potassium use efficient (KUE) varieties is critical for sustainable food production in agricultural systems. In this study, we analysed the impact of potassium availability on agronomical attributes of thirty barley genotypes grown at four different levels of potassium (0.002 mM, 0.02 mM, 2 mM, 20 mM) under glasshouse conditions. The results showed that the availability of potassium in the soil had a major effect on yield components i.e., spike number, grain number and grain weight. Furthermore, grain weight showed a strong correlation with grain number and spike number at all levels of potassium supply. Although an increase in potassium supply led to an increase in plant height in all genotypes, the correlation with grain weight was very weak at all levels. Potassium supplementation caused an increase in shoot dry weight, which also showed a weak correlation with grain weight at the 0.002 mM potassium supply level. The genotypes Gebeina, Skiff, YF374, Flagship and YF374 were highly efficient in performing at suboptimal K supply levels and, thus, can be recommended to be grown in K-impoverished soils. We also suggest that grain and spike numbers could be used as proxies for KUE studies, to construct DH lines and identify QTL to improve low potassium tolerance and KUE in barley.


Sign in / Sign up

Export Citation Format

Share Document