scholarly journals Detection of Epistasis for Seed and Some Phytochemical Traits in Coriander under Different Irrigation Regimes

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1891
Author(s):  
Mehrdad Hanifei ◽  
Shaghayegh Mehravi ◽  
Mostafa Khodadadi ◽  
Anita Alice Severn-Ellis ◽  
David Edwards ◽  
...  

Coriander (Coriander sativum L.) is an annual herb mainly cultivated for its seed characteristics. Drought stress is a major problem which affects coriander behaviour through biochemical responses. This study aimed to determine the nature and magnitude of epistasis in inheritance of seed yield (SY), percent of dehulled seed (PODS), percent of seed hulls (POSH), essential oil content (EOC), essential oil yield (EOY), dehulled seed fatty acid content (DSFAC), hull fatty acid content (HFAC), fatty acid content (FAC), and fatty acid yield (FAY), and to estimate additive and dominance variance for the traits not influenced by epistasic effects. Three testers, TN-59-158 (highly drought-susceptible), TN-58-230 (highly drought-tolerant, but low-yielding), and their F1 hybrid were each crossed for six genotypes. The experiment was performed under different levels of water deficit: control (C), moderate water deficit (MWD), and severe water deficit (SWD) conditions. Epistasis affected the expression of SY, EOC, EOY, FAC, and FAY in all water conditions, PODS in C, POSH in SWD, HFAC in MWD, and DSFAC in both C and MWD conditions. Total epistasic effects were partitioned, showing that both [i] and [j + l] type interactions were significant, with a prevalent influence of [i] type interactions on these traits except for POSH and FAC in the SWD condition, which exhibited a higher value of the [j + l] type. Both additive and non-additive gene actions were significant for those traits not significantly affected by epistasis in C, MWD, or SWD conditions. An additive type of gene action was preponderant for PODS in MWD and SWD, POSH in MWD, DSFAC in SWD, and HFAC in C and SWD conditions.

2019 ◽  
Vol 17 (03) ◽  
pp. 255-264 ◽  
Author(s):  
Amir Gholizadeh ◽  
Hamid Dehghani ◽  
Mostafa Khodadadi

AbstractDrought stress restricts the production of agricultural crops through morphological, physiological and biochemical changes in plants. This study explored the genetic control of physiological traits related to drought in coriander. In a diallel analysis, all six parents, their 15 F1 hybrids and 15 F2 populations were subjected to different irrigation regimes including well-watered, mild and severe water deficit stress. Drought stress decreased the relative chlorophyll content (RCC), the relative water content (RWC), chlorophyll a (Chla), chlorophyll b (Chlb), total chlorophyll (TChl) content, carotenoids (Car) and essential oil yield (EOY) in F1 and F2 generations. General combining ability (GCA) and specific combining ability effects were highly significant for all traits in F1 and F2 generations. Additive gene action was predominant for Chla, Chlb, TChl and Car under well-watered condition while non-additive gene effects were more important under mild and severe water deficit stresses in F1 and F2 generations for the above traits. Additive gene effects were more important for RCC, RWC and electrolyte leakage (EL) traits in both F1 and F2 generations under mild and severe water deficit stresses. In conclusion, the high narrow-sense heritability and significant genetic correlations between EOY and RCC, RWC and EL suggest that these traits can be used as surrogates to identify superior genotypes for arid and semi-arid regions. Also, the parental lines, P4 and P6 had the best GCA for RCC, RWC, Chla, Chlb, TChl, Car, essential oil content and EOY.


Author(s):  
C. S. Bricker ◽  
S. R. Barnum ◽  
B. Huang ◽  
J. G. Jaworskl

Cyanobacteria are Gram negative prokaryotes that are capable of oxygenic photosynthesis. Although there are many similarities between eukaryotes and cyanobacteria in electron transfer and phosphorylation during photosynthesis, there are two features of the photosynthetic apparatus in cyanobacteria which distinguishes them from plants. Cyanobacteria contain phycobiliproteins organized in phycobilisomes on the surface of photosynthetic membrane. Another difference is in the organization of the photosynthetic membranes. Instead of stacked thylakolds within a chloroplast envelope membrane, as seen In eukaryotes, IntracytopIasmlc membranes generally are arranged in three to six concentric layers. Environmental factors such as temperature, nutrition and light fluency can significantly affect the physiology and morphology of cells. The effect of light Intensity shifts on the ultrastructure of Internal membrane in Anabaena variabilis grown under controlled environmental conditions was examined. Since a major constituent of cyanobacterial thylakolds are lipids, the fatty acid content also was measured and correlated with uItrastructural changes. The regulation of fatty acid synthesis in cyanobacteria ultimately can be studied if the fatty acid content can be manipulated.


2016 ◽  
Vol 2 (1) ◽  
pp. 37-42 ◽  
Author(s):  
J.M. Pino Moreno ◽  
A. Ganguly

In the present paper we have determined the fatty acid content of some edible insects of Mexico. A comparative analysis of the insect species studied in this research showed that caproic acid was present in a minimal proportion which ranged between 0.01 for Periplaneta americana (nymphs) and 0.06 (g/100 g, dry basis) for Euschistus strenuus. The highest proportion of caprilic acid (0.09) was found in Tenebrio molitor (adults). Atta sp. had the highest amount of capric acid (0.26). Polistes sp. was found to be rich in lauric acid (0.77) and for myristic acid it had the highest content (5.64). Dactylopius sp. and E. strenuus were rich in palmitic acid (14.89). Euschistus taxcoensis had the highest quantity of palmitoleic acid (12.06). Llaveia axin exhibited the highest quantity of stearic acid (22.75). Polistes sp. was found to be rich in oleic acid (38.28). The highest quantity of linoleic acid was observed in T. molitor (larvae) (10.89), and in L. axin the highest content of linolenic acid (7.82) was obtained. A comparison between the species under the present investigation revealed that, in general, the insects are poor in caproic, caprilic, capric, lauric, myristic, palmitoleic and linolenic acids, because the quantities were either minimal or could not be detected at all. They had moderate quantities of stearic, palmitic and linoleic acids and had high quantities of oleic acid. Finally it was concluded that although a particular insect species is unable to fulfil the total fatty acid need for a human, if consumed in combination they could definitely be able to supply a good amount of this highly valued nutrient.


Diversity ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 105
Author(s):  
Amirah Yuslan ◽  
Sharifah Najuwa ◽  
Atsushi Hagiwara ◽  
Mazlan A. Ghaffar ◽  
Hidayu Suhaimi ◽  
...  

Salinity is a known factor in shaping population dynamics and community structure through direct and indirect effects on aquatic ecosystems. Salinity changes further influence food webs through competition and predation. The responses of Moina macrocopa (Cladocera) collected from Setiu Wetland lagoon (Terengganu) was evaluated through manipulative laboratory experiments to understand the ability of M. macrocopa to tolerate high salinity stress. Specifically, the fatty acid composition, growth, survival, and reproduction of this cladocerans species was examined. Sodium chloride (NaCl) as used in the treatments water with the concentration 0, 4, 6, 8, 12, and 15 salinity. Fatty acid levels were determined using Gas Chromatography and Mass Spectrophotometry (GC-MS). The results indicated that optimal conditions produced the highest fatty acid content, especially the polyunsaturated fatty acid content, such as EPA (eicosapentaenoic acid), ALA (alpha-linoleic acid), ARA (arachidonic acid), and DHA (docosahexaenoic acid). Furthermore, M. macrocopa survival was best at salinity 0, with a percentage of 98%, whereas the opposite occurred at salinity 15, with approximately 20% of viable animals surviving. Besides, M. macrocopa also showed the highest reproduction rate at salinity 0 (e.g., average initial age of reproduction, 4.33 ± 0.58 days) compared with other salinities level. Interestingly, the difference in growth at different salinities was not evident, an unusual finding when considering adverse effects such as osmoregulation pressure on the organism. Based on the results, we conclude that M. macrocopa can only tolerate salinity below salinity 8 and cannot withstand stressful environmental conditions associated with salinities above 8.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Roel M. Maas ◽  
Yale Deng ◽  
Yueming Dersjant-Li ◽  
Jules Petit ◽  
Marc C. J. Verdegem ◽  
...  

AbstractSustainable aquafeed production requires fishmeal replacement, leading to an increasing use of plant-derived ingredients. As a consequence, higher levels of antinutritional substances, such as non-starch polysaccharides and phytate, are present in aquafeeds, with negative effects on fish performance, nutrient digestibility and overall gut health. To alleviate these negative effects, providing exogenous digestive enzymes and/or probiotics can be an effective solution. In this study, we tested the effect of dietary supplementation of enzymes (phytase and xylanase) and probiotics (three strains of Bacillus amyloliquefaciens) on nutrient digestion kinetics and volatile fatty acid content along the gut, and the distal gut microbiome diversity in Nile tilapia. Chyme volatile fatty content was increased with probiotic supplementation in the proximal gut, while lactate content, measured for the first time in vivo in fish, decreased with enzymes along the gut. Enzyme supplementation enhanced crude protein, Ca and P digestibility in proximal and middle gut. Enzymes and probiotics supplementation enhanced microbial interactions as shown by network analysis, while increased the abundance of lactic acid bacteria and Bacillus species. Such results suggest that supplementation with exogenous enzymes and probiotics increases nutrient availability, while at the same time benefits gut health and contributes to a more stable microbiome environment.


2020 ◽  
Vol 11 (1) ◽  
pp. 188
Author(s):  
Piotr Skałecki ◽  
Agnieszka Kaliniak-Dziura ◽  
Piotr Domaradzki ◽  
Mariusz Florek ◽  
Ewa Poleszak ◽  
...  

The aim of the study was to assess the influence of the addition of fish raw materials (roe or fish meat) on the quality and nutritional value of pork pâtés. The control group (n = 4) consisted of pork pâtés, I experimental group (n = 6) of pâtés with 20% addition of roe (perch and pike), and II group of pâtés with 20% addition of fish (perch and pike meat) (n = 6). The pâtés’ pH, color, and profiled texture analysis were instrumentally measured and water, protein, fat, ash, and fatty acid content were determined by reference methods. To assess the oxidative stability of lipids the measurement of peroxide number, thiobarbituric acid reactive substances and content of conjugated dienes and trienes was used. The degree of fat hydrolysis was determined on the basis of acid value. Sensory analysis was carried out using the scaling method, taking into account 12 unit quality characteristics. Products with roe and meat contained less fat (accordingly 15.9% and 14.1%) and showed lower calorific value (accordingly 225.6 and 208.6 kcal/100 g) compared to pork pâtés (20.2% of lipids, 267 kcal/100 g). Moreover, the addition of fish raw materials improved the index of nutritional quality for protein (from 3.2 to 3.9) and beneficially reduced the nutritional index for fat (from 2.2 to 1.9). Fish constituents modified, to a certain extent, the color, texture, and sensory properties of pâtés, while maintaining full acceptability in consumer assessment. The addition of fish roe significantly increased the healthful quality by improving the fatty acid profile of pâtés, in which the significantly highest content of n-3 fatty acids, including eicosapentaenoic and docosahexaenoic acids (accordingly 252.21, 43.17, and 107.94 mg/100 g product), as well the highest concentration of saturated branched chain fatty acids were determined (18.75 mg/100 g product).


Sign in / Sign up

Export Citation Format

Share Document