scholarly journals Phenotyping of the Visceral Adipose Tissue Using Dual Energy X-ray Absorptiometry (DXA) and Magnetic Resonance Imaging (MRI) in Pigs

Animals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1165 ◽  
Author(s):  
Anna C. Weigand ◽  
Helen Schweizer ◽  
Deise Aline Knob ◽  
Armin M. Scholz

The objective of this study was to phenotype visceral adipose tissue (VAT) in pigs. In this context, the ability to detect VAT by using the DXA CoreScan mode within the enCORE software, version 17 (GE Healthcare) was evaluated in comparison with MRI measurements (Siemens Magnetom C!) of the same body region. A number of 120 crossbred pigs of the F1 and F2 generation, with the parental breeds Large White, Landrace, Piétrain, and Duroc, were examined at an age of 150 days. A whole-body scan in two different modes (“thick”, “standard”) was carried out by a GE Lunar iDXA scanner. Very strong relationships (R2 = 0.95, RMSE = 175 cm3) were found for VAT between the two DXA modes. The comparison of VAT measured by MRI and DXA shows high linear relationships (“thick”: R2 = 0.76, RMSE = 399.25 cm3/“standard”: R2 = 0.71, RMSE = 443.42 cm3), but is biased, according to the Bland–Altman analysis. A variance analysis of VAT shows significant differences for both DXA modes and for MRI between male and female pigs, as well as between F1 and F2. In conclusion, DXA “CoreScan” has the ability to estimate VAT in pigs with a close relationship to MRI but needs bias correction.

1996 ◽  
Vol 81 (6) ◽  
pp. 2445-2455 ◽  
Author(s):  
Robert Ross ◽  
John Rissanen ◽  
Heather Pedwell ◽  
Jennifer Clifford ◽  
Peter Shragge

Ross, Robert, John Rissanen, Heather Pedwell, Jennifer Clifford, and Peter Shragge. Influence of diet and exercise on skeletal muscle and visceral adipose tissue in men. J. Appl. Physiol. 81(6): 2445–2455, 1996.—The effects of diet only (DO) and diet combined with either aerobic (DA) or resistance (DR) exercise on subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), lean tissue (LT), and skeletal muscle (SM) tissue were evaluated in 33 obese men (DO, n= 11; DA, n = 11; DR, n = 11). All tissues were measured by using a whole body multislice magnetic resonance imaging (MRI) model. Within each group, significant reductions were observed for body weight, SAT, and VAT ( P < 0.05). The reductions in body weight (∼10%) and SAT (∼25%) and VAT volume (∼35%) were not different between groups ( P > 0.05). For all treatments, the relative reduction in VAT was greater than in SAT ( P < 0.05). For the DA and DR groups only, the reduction in abdominal SAT (∼27%) was greater ( P < 0.05) than that observed for the gluteal-femoral region (∼20%). Conversely, the reduction in VAT was uniform throughout the abdomen regardless of treatment ( P > 0.05). MRI-LT and MRI-SM decreased both in the upper and lower body regions for the DO group alone ( P < 0.05). Peak O2 uptake (liters) was significantly improved (∼14%) in the DA group as was muscular strength (∼20%) in the DR group ( P< 0.01). These findings indicate that DA and DR result in a greater preservation of MRI-SM, mobilization of SAT from the abdominal region, by comparison with the gluteal-femoral region, and improved functional capacity when compared with DO in obese men.


Obesity Facts ◽  
2010 ◽  
Vol 3 (2) ◽  
pp. 7-7 ◽  
Author(s):  
Dirk Vissers ◽  
An Verrijken ◽  
Ilse Mertens ◽  
Caroline Van Gils ◽  
Annemie Van de Sompel ◽  
...  

2020 ◽  
Vol 158 (6) ◽  
pp. S-331-S-332
Author(s):  
Saurabh Dawra ◽  
Singh K. Anupam ◽  
Rakesh Kochhar ◽  
Jayanta Samanta ◽  
Saroj Sinha ◽  
...  

2008 ◽  
Vol 33 (4) ◽  
pp. 769-774 ◽  
Author(s):  
Jennifer L. Kuk ◽  
Katherine Kilpatrick ◽  
Lance E. Davidson ◽  
Robert Hudson ◽  
Robert Ross

The relationship between skeletal muscle mass, visceral adipose tissue, insulin sensitivity, and glucose tolerance was examined in 214 overweight or obese, but otherwise healthy, men (n = 98) and women (n = 116) who participated in various exercise and (or) weight-loss intervention studies. Subjects had a 75 g oral glucose tolerance test and (or) insulin sensitivity measures by a 3 h hyperinsulinemic–euglycemic clamp technique. Whole-body skeletal muscle mass and visceral adipose tissue were measured using a multi-slice magnetic resonance imaging protocol. Total body skeletal muscle mass was not associated with any measure of glucose metabolism in men or women (p > 0.10). These observations remained independent of age and total adiposity. Conversely, visceral adipose tissue was a significant predictor of various measures of glucose metabolism in both men and women with or without control for age and (or) total body fat (p < 0.05). Although skeletal muscle is a primary site for glucose uptake and deposition, these findings suggest that unlike visceral adipose tissue, whole-body skeletal muscle mass per se is not associated with either glucose tolerance or insulin sensitivity in overweight and obese men and women.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Joshua H. F. Cooper ◽  
Blake E. G. Collins ◽  
David R. Adams ◽  
Robert A. Robergs ◽  
Cheyne E. Donges

Purpose. Limited data exists for the effects of sprint-interval training (SIT) and endurance training (ET) on total body composition, abdominal visceral adipose tissue, and plasma inflammation. Moreover, whether “active” or “passive” recovery in SIT provides a differential effect on these measures remains uncertain.Methods. Sedentary middle-aged men (n=62;49.5±5.8 y;29.7±3.7 kg·m2) underwent abdominal computed tomography, dual-energy X-ray absorptiometry, venepuncture, and exercise testing before and after the interventions, which included the following: 12 wks 3 d·wk−1 ET (n=15; 50–60 min cycling; 80% HRmax), SIT (4–10 × 30 s sprint efforts) with passive (P-SIT;n=15) or active recovery (A-SIT;n=15); or nonexercise control condition (CON;n=14). Changes in cardiorespiratory fitness, whole-body and visceral fat mass, and plasma systemic inflammation were examined.Results. Compared to CON, significant increases in interpolated power output (P-SIT,P<0.001; ET,P=0.012; A-SIT,P=0.041) and test duration (P-SIT,P=0.001; ET,P=0.012; A-SIT,P=0.046) occurred after training. Final VO2consumption was increased after P-SIT only (P<0.001). Despite >90% exercise compliance, there was no change in whole-body or visceral fat mass or plasma inflammation (P>0.05).Conclusion. In sedentary middle-aged men, SIT was a time-effective alternative to ET in facilitating conditioning responses yet was ineffective in altering body composition and plasma inflammation, and compared to passive recovery, evidenced diminished conditioning responses when employing active recovery.


2021 ◽  
Author(s):  
Guillermo Sanchez-Delgado ◽  
Borja Martinez-Tellez ◽  
Francisco M. Acosta ◽  
Samuel Virtue ◽  
Antonio Vidal-Puig ◽  
...  

<a>Human brown adipose tissue (BAT) volume has been consistently claimed as inversely associated with whole-body adiposity. However, recent advances in the assessment of human BAT suggest that previously reported associations may have been biased. The present cross-sectional study investigates the association of BAT volume, mean radiodensity, and <sup>18</sup>F-fluordeoxyglucose (<sup>18</sup>F-FDG) uptake (assessed via a static positron emission tomography-computerized tomography (PET-CT) scan after a 2-hour personalized cold exposure) with whole-body adiposity (measured by dual-energy X-ray absorptiometry) in 126 young adults (42 men / 84 women; 25±5 kg/m<sup>2</sup>). BAT volume, but not <sup>18</sup>F-FDG uptake, was positively associated with body mass index (BMI), fat mass, and visceral adipose tissue mass in men, but not in women. These associations were independent of the date when the PET-CT was performed, insulin sensitivity and body surface area. BAT mean radiodensity, an inverse proxy of BAT fat content, was negatively associated </a>was with BMI, waist circumference, fat mass and visceral adipose tissue mas in men and with percentage fat mass in women. These results refute the widely held belief that human BAT volume is reduced in obese persons, at least in young adults, and suggest that it might even be the opposite in young men.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Cuiqing Liu ◽  
Guohua Lin ◽  
Guoqing Zhang ◽  
Huanhuan Wang ◽  
Hongping Yin ◽  
...  

Inflammation in insulin sensitive tissues, the visceral adipose tissue (VAT), is a central abnormality in obesity/insulin resistance (IR), with recruitment of innate immune cells such as monocytes into adipose tissue driving the development of glucose and lipoprotein dysregulation. We evaluated the role of Toll like receptor 3 (TLR3) in high fat diet-induced obesity and IR. Wild-type C57BL/6 and TLR3 -/- male mice were fed a high fat diet for 15 weeks. High fat feeding resulted in increased TLR3 expression in VAT. TLR3 deficiency attenuated the high fat diet-increased body weight, fasting blood glucose, whole body IR and impaired glucose tolerance. Morphologically, high fat diet induced adiposity and enlarged adipocyte area in VAT, which were attenuated in TLR3 -/- mice. Functionally, high fat diet induced dysregulation of adipocytokines such as downregulation of adiponectin and resistin, upregulation of leptin in VAT, with the disturbance of adiponectin and leptin was corrected in TLR3-/- mice. In addition, high fat diet inhibited insulin pathway, accompanied with decreased phosphorylation of AMPK and lowered expression of lipolysis-related enzymes such as HSL and ATGL, both at the mRNA levels and protein levels, all of which was corrected by TLR3 deficiency. Finally, TLR3 deletion suppressed the high fat feeding-mediated macrophage polarization, evidenced by increased type M1 macrophage (F4/80+/CD11c+/CD206-) infiltration and upregulation of M1 genes such as IL-6 and TNFα. TLR3 modulates high fat diet-induced IR and obesity by suppressing M1 macrophage-mediated VAT inflammation, facilitating secretion of adipocyte-derived hormones, thus enhanced AMPK activity and adipose lipolysis. These findings provide new mechanistic links between dietary factors-mediated IR and associated abnormalities in lipid metabolism and adipose inflammation.


Sign in / Sign up

Export Citation Format

Share Document