scholarly journals Bloom Time Effect Depends on Muscle Type and May Determine the Results of pH and Color Instrumental Evaluation

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1282
Author(s):  
Damian Knecht ◽  
Kamil Duziński ◽  
Anna Jankowska-Mąkosa

The aim of this study was to determine the effect of 30 min bloom time and the type of muscle on pH and color parameters together with the possibility of estimating these measurements. The research material consisted of 270 samples from 6 muscle types: LD—Longissimus dorsi, LL—Longissimus lumborum, IL—Iliacus, SEM—Semimembranosus, CT—Cutaneous trunci, LTD—Latissimus dorsi. Measurements included pH and color of fresh pork at 0 min, and after 30 min bloom time. Bloom time influenced all analyzed parameters, although to a varying effect, depending on the muscle type. The lowest pH values were noted for dorsal-located muscles (LD, LL), then in the ham area (IL, SEM), and the highest values of the location on the side surface of the carcass (CT, LTD). The large increase in the proportion of L* and a* was observed for CT muscle (20–30%, the highest of all observed) and LTD (20–25%); for LD and LL the largest growth changes were observed for parameters b* (15–20%) and H* (20–30%). The lowest number of strong correlations was noted for LD and CT muscles, and the largest for SEM. A very good fit (R2 > 0.90) of regression equations was achieved in 7 cases. The presented results are an important contribution to the rapid and precise instrumental evaluation of pH and color.

2017 ◽  
Vol 312 (2) ◽  
pp. C111-C118 ◽  
Author(s):  
Cuiping Zhao ◽  
Douglas M. Swank

Stretch activation (SA) is a delayed increase in force that enables high power and efficiency from a cyclically contracting muscle. SA exists in various degrees in almost all muscle types. In Drosophila, the indirect flight muscle (IFM) displays exceptionally high SA force production ( FSA), whereas the jump muscle produces only minimal FSA. We previously found that expressing an embryonic (EMB) myosin heavy chain (MHC) isoform in the jump muscle transforms it into a moderately SA muscle type and enables positive cyclical power generation. To investigate whether variation in MHC isoforms is sufficient to produce even higher FSA, we substituted the IFM MHC isoform (IFI) into the jump muscle. Surprisingly, we found that IFI only caused a 1.7-fold increase in FSA, less than half the increase previously observed with EMB, and only at a high Pi concentration, 16 mM. This IFI-induced FSA is much less than what occurs in IFM, relative to isometric tension, and did not enable positive cyclical power generation by the jump muscle. Both isometric tension and FSA of control fibers decreased with increasing Pi concentration. However, for IFI-expressing fibers, only isometric tension decreased. The rate of FSA generation was ~1.5-fold faster for IFI fibers than control fibers, and both rates were Pi dependent. We conclude that MHC isoforms can alter FSA and hence cyclical power generation but that isoforms can only endow a muscle type with moderate FSA. Highly SA muscle types, such as IFM, likely use a different or additional mechanism.


1990 ◽  
Vol 258 (3) ◽  
pp. G338-G343 ◽  
Author(s):  
A. Tottrup ◽  
A. Forman ◽  
N. Uldbjerg ◽  
P. Funch-Jensen ◽  
K. E. Andersson

Isolated smooth muscle strips from the human esophagus representing both the longitudinal and circular layers of the esophagogastric junction and the esophageal body were prepared. The strips were mounted in organ baths, and resting length was defined. By repeatedly increasing the length of the strips with 20% of resting length and recording values of resting and active tensions, length-tension relations for each muscle type were constructed. Only circular strips from the esophagogastric junction developed active, resting tension, disclosed by replacing the normal Ca2(+)-containing Krebs solution with Ca2(+)-free medium. Carbachol (10(-6) M) was used for submaximal activation of the contractile apparatus. At lengths between 180 and 260% of resting length, all strips reached optimum length (LO) where further elongation gave no further increase in active tension development. Repeated stimulations with carbachol was possible at a length of 200% of LO without affecting reproducibility. Determination of different collagen components revealed no differences between muscle types.


2020 ◽  
Vol 10 (22) ◽  
pp. 8215
Author(s):  
Katarzyna Tkacz ◽  
Monika Modzelewska-Kapituła ◽  
Adam Więk ◽  
Zenon Nogalski

This study was conducted to determine the optimal blooming time in beef muscles based on ΔE, and to analyze the effects of muscle type and ageing time on beef color and blooming. Beef color was determined on freshly cut longissimus lumborum (LL, n = 8) and semimembranosus (SM, n = 8) muscles on days 1, 9, and 14 of ageing during 60 min blooming at 5 min intervals. It was found that ΔE0, representing the difference in color between freshly cut muscles and subsequently analyzed samples, supported the determination of the optimal blooming time, which varied across ageing times (15, 20, 25 min for the LL muscle, and 10, 15, 20 min for the SM muscle on days 1, 9, and 14 of ageing, respectively). Beef color was affected by both muscle type and ageing. The values of color parameters increased between days 1 and 9 of ageing. The results may have practical applications because beef should be presented to consumers and restaurant owners approximately 25 min after cutting, when its color has fully developed.


2019 ◽  
Vol 74 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Shubin Zhou ◽  
Zhaoxian Yuan ◽  
Qiuming Cheng ◽  
David C. Weindorf ◽  
Zhenjie Zhang ◽  
...  

As a technique capable of rapid, nondestructive, and multi-elemental analysis, portable X-ray fluorescence (pXRF) has applications to mineral exploration, environmental evaluation, and archaeological analysis. However, few applications have been conducted in the smelting industry especially when analyzing the metal concentration in ore concentrate samples. This research analyzed the effectiveness of using pXRF in determining the metal concentration in Fe concentrate. For this proof of concept study, Fe ore samples dominated by Fe and Si were collected from the Northeastern University Mineral Processing Laboratory (Shenyang, China) and directly analyzed using pXRF, laboratory-based XRF, and titration methods. The compactness (density) of the ore concentrate was found to have very little effect on pXRF readings. The pXRF readings for Fe and Si were comparative to laboratory-based XRF results. Based on the strong correlations between the pXRF and XRF results (Fe: R2 > 0.99, Si: R2 > 0.96), linear calibrations were adopted to improve the accuracy of pXRF readings. Linear regression equations derived from the relations between XRF results and pXRF results of 21 Fe ore concentrate samples were used to calibrate the pXRF, and then validation was performed on five additional samples. Results from this preliminary study suggest that ordinary least squares (OLS) regression improves the accuracy dramatically, especially for Fe with relative errors (REs) decreasing to 0.03%–3.27% from 4.26%–8.32%. Consequently, pXRF shows strong promise for rapid, quantitative analysis of Fe concentration in Fe ore concentrate. Based on the results obtained in this study, a larger, more comprehensive study is warranted to confirm the results obtained.


1981 ◽  
Vol 61 (4) ◽  
pp. 577-579 ◽  
Author(s):  
W. VAN LIEROP

Regression equations were derived for converting pH values of organic soils determined by five procedures. Data were obtained by measuring the pH of 30 soils using the following volumetric ratios and solutions: 1:1, soil to water; 1:2 and 1:4, soil to 0.01M CaCl2; and 1:2 and 1:4 soil to 1N KCl. Average pH values measured in 0.01M CaCl2 and 1N KCl were 0.44 and 0.70 pH units lower than those measured in water (pH 5.21). Converting data by merely adding or subtracting the average difference between methods was not as accurate as using appropriate regression equations. These equations are provided in the text and indicated that differences between soil pH values measured by different procedures increased as soil pH increased. Similar pH values were found with the 1:2 and 1:4 soil to 0.1M CaCl2 solution ratios, though a small dilution effect was observed when 1N KCl was used at these ratios.


2012 ◽  
Vol 303 (2) ◽  
pp. R168-R176 ◽  
Author(s):  
Sarah L. Alderman ◽  
Jordan M. Klaiman ◽  
Courtney A. Deck ◽  
Todd E. Gillis

In vertebrates each of the three striated muscle types (fast skeletal, slow skeletal, and cardiac) contain distinct isoforms of a number of different contractile proteins including troponin I (TnI). The functional characteristics of these proteins have a significant influence on muscle function and contractility. The purpose of this study was to characterize which TnI gene and protein isoforms are expressed in the different muscle types of rainbow trout ( Oncorhynchus mykiss) and to determine whether isoform expression changes in response to cold acclimation (4°C). Semiquantitative real-time PCR was used to characterize the expression of seven different TnI genes. The sequence of these genes, cloned from Atlantic salmon ( Salmo salar) and rainbow trout, were obtained from the National Center for Biotechnology Information databases. One-dimensional gel electrophoresis and tandem mass spectrometry were used to identify the TnI protein isoforms expressed in each muscle type. Interestingly, the results indicate that each muscle type expresses the gene transcripts of up to seven TnI isoforms. There are significant differences, however, in the expression pattern of these genes between muscle types. In addition, cold acclimation was found to increase the expression of specific gene transcripts in each muscle type. The proteomics analysis demonstrates that fast skeletal and cardiac muscle contain three TnI isoforms, whereas slow skeletal muscle contains four. No other vertebrate muscle to date has been found to express as many TnI protein isoforms. Overall this study underscores the complex molecular composition of teleost striated muscle and suggests there is an adaptive value to the unique TnI profiles of each muscle type.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 931
Author(s):  
Józef Piotr Girjatowicz ◽  
Małgorzata Świątek

The relationship between air temperature (mainly winter, December-March) in Świnoujście, Gdynia, and Elbląg and ice parameters (dates of the first ice and disappearance of the last ice, the length of the ice season, number of days with ice, maximum ice height) of southern Baltic coastal lagoons (Szczecin, Puck, and Vistula) was investigated. Trends in these parameters were determined, too. The observation material comes from the archives of the Institute of Meteorology and Water Management and spanned the winters from 1950/51 through to 2019/20. Relationships between the selected ice parameters for the study basins and the values of air temperature were examined using correlation and regression methods. The regression equations and trends, as well as their correlation and determination coefficients, were determined. The statistical significance of these relationships was examined using the Fisher-Snedecor test. Strong correlations between ice parameters values and air temperature were obtained, characterized by high values of both correlation coefficients and statistical significance. All trends of ice parameters indicate mitigation of ice conditions. An acceleration in both temperature and ice condition mildening occurred in the late 1980s, and especially in the last years of the study period. These trends, except the first ice date, are statistically significant, some even at α < 0.001. The length of the ice season becomes significantly shorter, the number of days with ice and the maximum thickness is smaller, and the last ice is disappearing early. An increase in the correlation and determination coefficients and a characterized trend of ice parameters values towards the East was found. It shows the increased impact of a warming climate in this direction on the southern Baltic coast. Strong correlations and trends may be of prognostic significance.


2020 ◽  
Vol 63 (2) ◽  
pp. 423-430
Author(s):  
Aurelia Radzik-Rant ◽  
Witold Rant ◽  
Gabriela Sosnowiec ◽  
Marcin Świątek ◽  
Roman Niżnikowski ◽  
...  

Abstract. An experiment was conducted to determine the chosen bioactive components and physico-chemical characteristics of lamb meat of different animal genotypes and the muscle types. The 22 ram lambs of Polish Merino (PM) and 22 crossbreeds of Polish Merino × Berrichone du Cher (PMB) were fattened to achieve their slaughter weight of 40 kg. After slaughter, the carcasses were kept at 4 ∘C for 24 h. Then, the samples of longissimus lumborum (LL) and gluteus medius (GM) muscle were collected to analyse the physico-chemical traits; fatty acid profile; and concentrations of taurine, carnosine, L-carnitine. The GM muscle compared to LL had the higher value (P < 0.05) of L* and a lower value (P < 0.05) of b* and H* both in PM and PMB lambs. The value of expressed juice was lower (P < 0.05) in both LL and GM muscles of PM lambs. A higher amount (P < 0.05) of collagen was found in LL muscle compared to GM both in PM and PMB lambs. The GM muscle of PM lambs showed higher (P < 0.05) conjugated linoleic acid (CLA) content, as well as higher total polyunsaturated acids (PUFAs), PUFA n-6, and PUFA n-3 (P < 0.05). The GM muscle was characterized by a higher (P < 0.05) content of taurine, while in the LL muscle there was a higher amount (P < 0.05) of carnosine. A larger amount (P < 0.05) of L-carnitine was found in GM muscle but only within PMB lambs. The obtained results showed a greater impact of the lamb's genotype on the physical characteristics of meat than on its chemical composition and the content of bioactive components. The muscle type had an effect on meat colour; collagen content; fatty acid profile; and amount of taurine, carnosine, and L-carnitine present.


2019 ◽  
Vol 62 (2) ◽  
pp. 383-391 ◽  
Author(s):  
Witold Rant ◽  
Aurelia Radzik-Rant ◽  
Marcin Świątek ◽  
Roman Niżnikowski ◽  
Żaneta Szymańska ◽  
...  

Abstract. The research carried out on meat from 45 ram lambs of the Polish merino breed allowed to determine the effect of meat aging and muscle type on physicochemical characteristics and oxidative stability of lipids. Analysis of physicochemical traits (pH, meat color, expressed juice, cooking loss, shear force, moisture, protein, fat and total collagen content) was performed on fresh and meat aged for 14 d in the longissimus lumborum (LL) and gluteus medius (GM) muscles. The meat aging determined all physicochemical characteristics except protein and fat content. More changes in pH and meat color parameters were defined in the GM muscle compared to the LL muscle. The increase in the tenderness of meat expressed as a reduction (P < 0.05) of shear force values was observed in both muscles aged for 14 d. A lower value (P < 0.05) of the shear force, despite the higher content of collagen, was determined in the GM muscle compared to LL. The investigated muscles differed in the degree of lipid peroxidation expressed as thiobarbituric acid-reactive substances (TBARS) in both fresh and aged meat. The TBARS value was lower (P < 0.05) in the LL muscle than in GM. In the longissimus lumborum muscle, the significantly lower content of polyunsaturated fatty acids (PUFAs) and PUFA n-6 has been recorded. The oxidation stability was not influenced by the meat aging.


Sign in / Sign up

Export Citation Format

Share Document