scholarly journals Genome-Wide Associations for Microscopic Differential Somatic Cell Count and Specific Mastitis Pathogens in Holstein Cows in Compost-Bedded Pack and Cubicle Farming Systems

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1839
Author(s):  
Patricia Wagner ◽  
Tong Yin ◽  
Kerstin Brügemann ◽  
Petra Engel ◽  
Christina Weimann ◽  
...  

The aim of the present study was to detect significant SNP (single-nucleotide polymorphism) effects and to annotate potential candidate genes for novel udder health traits in two different farming systems. We focused on specific mastitis pathogens and differential somatic cell fractions from 2198 udder quarters of 537 genotyped Holstein Friesian cows. The farming systems comprised compost-bedded pack and conventional cubicle barns. We developed a computer algorithm for genome-wide association studies allowing the estimation of main SNP effects plus consideration of SNPs by farming system interactions. With regard to the main effect, 35 significant SNPs were detected on 14 different chromosomes for the cell fractions and the pathogens. Six SNPs were significant for the interaction effect with the farming system for most of the udder health traits. We inferred two possible candidate genes based on significant SNP interactions. HEMK1 plays a role in the development of the immune system, depending on environmental stressors. CHL1 is regulated in relation to stress level and influences immune system mechanisms. The significant interactions indicate that gene activity can fluctuate depending on environmental stressors. Phenotypically, the prevalence of mastitis indicators differed between systems, with a notably lower prevalence of minor bacterial indicators in compost systems.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Christina M. Dauben ◽  
Maren J. Pröll-Cornelissen ◽  
Esther M. Heuß ◽  
Anne K. Appel ◽  
Hubert Henne ◽  
...  

Abstract Background In recent years, animal welfare and health has become more and more important in pig breeding. So far, numerous parameters have been considered as important biomarkers, especially in the immune reaction and inflammation. Previous studies have shown moderate to high heritabilities in most of these traits. However, the genetic background of health and robustness of pigs needs to be extensively clarified. The objective of this study was to identify genomic regions with a biological relevance for the immunocompetence of piglets. Genome-wide Association Studies (GWAS) in 535 Landrace (LR) and 461 Large White (LW) piglets were performed, investigating 20 immune relevant traits. Besides the health indicators of the complete and differential blood count, eight different cytokines and haptoglobin were recorded in all piglets and their biological dams to capture mediating processes and acute phase reactions. Additionally, all animals were genotyped using the Illumina PorcineSNP60v2 BeadChip. Results In summary, GWAS detected 25 genome-wide and 452 chromosome-wide significant SNPs associated with 17 immune relevant traits in the two maternal pig lines LR and LW. Only small differences were observed considering the maternal immune records as covariate within the statistical model. Furthermore, the study identified across- and within-breed differences as well as relevant candidate genes. In LR more significant associations and related candidate genes were detected, compared with LW. The results detected in LR and LW are partly in accordance with previously identified quantitative trait loci (QTL) regions. In addition, promising novel genomic regions were identified which might be of interest for further detailed analysis. Especially putative pleiotropic regions on SSC5, SSC12, SSC15, SSC16 and SSC17 are of major interest with regard to the interacting structure of the immune system. The comparison with already identified QTL gives indications on interactions with traits affecting piglet survival and also production traits. Conclusion In conclusion, results suggest a polygenic and breed-specific background of immune relevant traits. The current study provides knowledge about regions with biological relevance for health and immune traits. Identified markers and putative pleiotropic regions provide first indications in the context of balancing a breeding-based modification of the porcine immune system.


2018 ◽  
Vol 2 (95) ◽  
pp. 78-81
Author(s):  
L.I. Shkarivska

The changes of the soil’s humus soil within the rural areas are investigated for the organic farming system. The most significant impact of organic agriculture on humus content over 55% was observed on soddy podzolic soils (V>75%), the lowest –7,5% on typical chernozem (V≈16%). Changes in the qualitative composition of humus for the introduction of various types of organic substrates are analyzed.


The farming system in West Bengal is being shifted by integration between the set of cash crops and the main food harvest process. This change in diversified farming systems, where smallholders have a production base in rice can complement production; affect technical efficiency and farm performance. The goal of this study was to investigate the status of crop diversification on smallholders in West Bengal. First, crop diversification regions were developed in West Bengal based on the Herfindahl index, which were categorized into three regions. Three sample districts were studied separately at the block level, and 915 small farmers from 41 sample villages of 9 sample blocks were interviewed through a good structure questionnaire for field studies from the sample districts. West Bengal was gradually moving towards multiple crop production. Furthermore, increasing rice production reduced the marginal use of inputs for the production of other crops. Farming and other vital factors such as HYVs area to GCA, average holding size and per capita income in some districts of West Bengal can be identified as determinants of crop diversification.


2017 ◽  
Vol 4 (2) ◽  
Author(s):  
SANJEEV KUMAR ◽  
SHIVANI . ◽  
S. K. SAMAL ◽  
S. K. DWIVEDI ◽  
MANIBHUSHAN .

Integration of different components viz. livestock, fishery, horticulture, mushroom etc. along with field crops not only enhanced productivity but by-products (waste) of one component act as input for another component through resource recycling within the system. Six integrated farming systems models with suitable combinations of Crop, vegetables, fruit trees, fish, livestock, mushroom etc. were made and evaluated at the experimental farm of ICAR Research Complex for Eastern Region, Patna during 2012-16 for harness maximum income, nutrient recycling and employment. Among six combinations, crop + fish + duck + goat resulted as most profitable combination in terms of productivity (RGEY- 22.2t), net income (Rs. 2,15,900/ha), additional employment (170 days/year) with income sustainability index (ISI) by 90.2. Upon nutrient recycling prepared from different wastes from the system Crop + fish + duck + goat combination added N (56.5 kg), P (39.6 kg) and K (42.7 kg) into the soil and reduced the cost of cultivation by 24 percent and was followed by crop + fish + goat combination. Crops grown under IFS mode with different types of manures produced 31 percent higher yield over conventional rice- wheat system. The contribution of crops towards the system productivity ranged from 36.4 to 56.2 %, while fish ranged from 22.0-33.5 %; for goat 25.4-32.9 %; for poultry 38.7 %; for duck 22.0-29.0 %; for cattle 32.2% and for mushroom 10.3 %.


2017 ◽  
Vol 7 (7) ◽  
pp. 2391-2403 ◽  
Author(s):  
Amanda S Lobell ◽  
Rachel R Kaspari ◽  
Yazmin L Serrano Negron ◽  
Susan T Harbison

Abstract Ovariole number has a direct role in the number of eggs produced by an insect, suggesting that it is a key morphological fitness trait. Many studies have documented the variability of ovariole number and its relationship to other fitness and life-history traits in natural populations of Drosophila. However, the genes contributing to this variability are largely unknown. Here, we conducted a genome-wide association study of ovariole number in a natural population of flies. Using mutations and RNAi-mediated knockdown, we confirmed the effects of 24 candidate genes on ovariole number, including a novel gene, anneboleyn (formerly CG32000), that impacts both ovariole morphology and numbers of offspring produced. We also identified pleiotropic genes between ovariole number traits and sleep and activity behavior. While few polymorphisms overlapped between sleep parameters and ovariole number, 39 candidate genes were nevertheless in common. We verified the effects of seven genes on both ovariole number and sleep: bin3, blot, CG42389, kirre, slim, VAChT, and zfh1. Linkage disequilibrium among the polymorphisms in these common genes was low, suggesting that these polymorphisms may evolve independently.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2167
Author(s):  
Ehsan Ahmadifar ◽  
Hamideh Pourmohammadi Fallah ◽  
Morteza Yousefi ◽  
Mahmoud A. O. Dawood ◽  
Seyed Hossein Hoseinifar ◽  
...  

The crucial need for safe and healthy aquatic animals obligates researchers in aquaculture to investigate alternative and beneficial additives. Medicinal herbals and their extracts are compromised with diverse effects on the performances of aquatic animals. These compounds can affect growth performance and stimulate the immune system when used in fish diet. In addition, the use of medicinal herbs and their extracts can reduce oxidative stress induced by several stressors during fish culture. Correspondingly, aquatic animals could gain increased resistance against infectious pathogens and environmental stressors. Nevertheless, the exact mode of action where these additives can affect aquatic animals’ performances is still not well documented. Understanding the mechanistic role of herbal supplements and their derivatives is a vital tool to develop further the strategies and application of these additives for feasible and sustainable aquaculture. Gene-related studies have clarified the detailed information on the herbal supplements’ mode of action when administered orally in aquafeed. Several review articles have presented the potential roles of medicinal herbs on the performances of aquatic animals. However, this review article discusses the outputs of studies conducted on aquatic animals fed dietary, medicinal herbs, focusing on the gene expression related to growth and immune performances. Furthermore, a particular focus is directed to the expected influence of herbal supplements on the reproduction of aquatic animals.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 192
Author(s):  
Xinghai Duan ◽  
Bingxing An ◽  
Lili Du ◽  
Tianpeng Chang ◽  
Mang Liang ◽  
...  

The objective of the present study was to perform a genome-wide association study (GWAS) for growth curve parameters using nonlinear models that fit original weight–age records. In this study, data from 808 Chinese Simmental beef cattle that were weighed at 0, 6, 12, and 18 months of age were used to fit the growth curve. The Gompertz model showed the highest coefficient of determination (R2 = 0.954). The parameters’ mature body weight (A), time-scale parameter (b), and maturity rate (K) were treated as phenotypes for single-trait GWAS and multi-trait GWAS. In total, 9, 49, and 7 significant SNPs associated with A, b, and K were identified by single-trait GWAS; 22 significant single nucleotide polymorphisms (SNPs) were identified by multi-trait GWAS. Among them, we observed several candidate genes, including PLIN3, KCNS3, TMCO1, PRKAG3, ANGPTL2, IGF-1, SHISA9, and STK3, which were previously reported to associate with growth and development. Further research for these candidate genes may be useful for exploring the full genetic architecture underlying growth and development traits in livestock.


Sign in / Sign up

Export Citation Format

Share Document