scholarly journals Purple Corn Anthocyanin Affects Lipid Mechanism, Flavor Compound Profiles, and Related Gene Expression of Longissimus Thoracis et Lumborum Muscle in Goats

Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2407
Author(s):  
Xingzhou Tian ◽  
Qi Lu ◽  
Shengguo Zhao ◽  
Jiaxuan Li ◽  
Qingyuan Luo ◽  
...  

The current study aimed to investigate the effect of anthocyanins on muscle flavor compound profiles in goats. Goats in three groups were fed a basic diet or a diet supplemented with 0.5 g/d or 1 g/d anthocyanin-rich purple corn pigment (PCP). Compared to the control group, plasma total cholesterol was significantly decreased (p < 0.05) in the anthocyanin groups. The feeding of anthocyanin increased (p < 0.05) flavor compound types and total alcohol level, whereas it decreased (p < 0.05) total hydrocarbons, aromatics, esters, and miscellaneous compounds in the longissimusthoracis et lumborum muscle (LTL). Adding PCP to the diet enriched (p < 0.05) vegetal, herbaceous, grease, and fruity flavors compared to the control group. The 0.5 g/d PCP group had increased (p < 0.05) abundance of peroxisome proliferator-activated receptor gamma, but there was a decreased (p < 0.05) level of lipoprotein lipase in LTL. Collectively, this study indicated that anthocyanin can improve mutton flavor by decreasing plasma lipid parameters and by modulating the abundance of several flavor-related genes of goats.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yeram Park ◽  
Deunsol Hwang ◽  
Hun-Young Park ◽  
Jisu Kim ◽  
Kiwon Lim

Aims. Hypoxic exposure improves glucose metabolism. We investigated to validate the hypothesis that carbohydrate (CHO) oxidation could increase in mice exposed to severe hypoxic conditions. Methods. Seven-week-old male ICR mice (n=16) were randomly divided into two groups: the control group (CON) was kept in normoxic condition (fraction of inspired O2=21%) and the hypoxia group (HYP) was exposed to hypoxic condition (fraction of inspired O2=12%, ≈altitude of 4,300 m). The CON group was pair-fed with the HYP group. After 3 weeks of hypoxic exposure, we measured respiratory metabolism (energy expenditure and substrate utilization) at normoxic conditions for 24 hours using an open-circuit calorimetry system. In addition, we investigated changes in carbohydrate mechanism-related protein expression, including hexokinase 2 (HK2), pyruvate dehydrogenase (PDH), pyruvate dehydrogenase kinase 4 (PDK4), and regulator of the genes involved in energy metabolism (peroxisome proliferator-activated receptor gamma coactivator 1-alpha, PGC1α) in soleus muscle. Results. Energy expenditure (EE) and CHO oxidation over 24 hours were higher in the HYP group by approximately 15% and 34% (p<0.001), respectively. Fat oxidation was approximately 29% lower in the HYP group than the CON group (p<0.01). Body weight gains were significantly lower in the HYP group than in the CON group (CON vs. HYP; 1.9±0.9 vs. −0.3±0.9; p<0.001). Hypoxic exposure for 3 weeks significantly reduced body fat by approximately 42% (p<0.001). PDH and PGC1α protein levels were significantly higher in the HYP group (p<0.05). Additionally, HK2 was approximately 21% higher in the HYP group. Conclusions. Hypoxic exposure might significantly enhance CHO oxidation by increasing the expression of PDH and HK2. This investigation can be useful for patients with impaired glucose metabolism, such as those with type 2 diabetes.


2019 ◽  
Vol 20 (5) ◽  
pp. 1153 ◽  
Author(s):  
Nunzia D’Onofrio ◽  
Gorizio Pieretti ◽  
Feliciano Ciccarelli ◽  
Antonio Gambardella ◽  
Nicola Passariello ◽  
...  

: The role of sirtuin 6 (SIRT6) in adipose abdominal tissue of pre-diabetic (pre-DM) patients is poorly known. Here, we evaluated SIRT6 expression in visceral abdominal fat of obese pre-diabetic patients and the potential effects of metformin therapy. Results indicated that obese pre-DM subjects showed low SIRT6 protein expression and high expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), peroxisome proliferator-activated receptor gamma (PPAR-γ), and sterol regulatory element-binding transcription factor 1 (SREBP-1). Obese pre-DM patients showed high values of glucose, insulin resistance (HOMA-IR), C reactive protein (CRP), nitrotyrosine, tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6), and low values of insulin (p < 0.05). Of note, abdominal fat tissue of obese pre-DM patients treated with metformin therapy presented higher SIRT6 expression and lower NF-κB, PPAR-γ, and SREBP-1 expression levels compared to pre-DM control group. Collectively, results show that SIRT6 is involved in the inflammatory pathway of subcutaneous abdominal fat of obese pre-DM patients and its expression responds to metformin therapy.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Chia Ju Chang ◽  
Thing-Fong Tzeng ◽  
Shorong-Shii Liou ◽  
Yuan-Shiun Chang ◽  
I-Min Liu

The aim of this study was to investigate the antiobesity and antihyperlipidaemic effects of myricetin. Myricetin exhibited a significant concentration-dependent decrease in the intracellular accumulation of triglyceride in 3T3-L1 adipocytes. The high-fat diet (HFD)-fed rats were dosed orally with myricetin or fenofibrate, once daily for eight weeks. Myricetin (300 mg kg−1per day) displayed similar characteristics to fenofibrate (100 mg kg−1per day) in reducing lowered body weight (BW) gain, visceral fat-pad weights and plasma lipid levels of HFD-fed rats. Myricetin also reduced the hepatic triglyceride and cholesterol contents, as well as lowered hepatic lipid droplets accumulation and epididymal adipocyte size in HFD-fed rats. Myricetin and fenofibrate reversed the HFD-induced down-regulation of the hepatic peroxisome proliferator activated receptor (PPAR)α. HFD-induced decreases of the hepatic protein level of acyl-CoA oxidase and cytochrome P450 isoform 4A1 were up-regulated by myricetin and fenofibrate. The elevated expressions of hepatic sterol regulatory element binding proteins (SREBPs) of HFD-fed rats were lowered by myricetin and fenofibrate. These results suggest that myricetin suppressed BW gain and body fat accumulation by increasing the fatty acid oxidation, which was likely mediated via up-regulation of PPARαand down-regulation of SREBP expressions in the liver of HFD-fed rats.


2021 ◽  
pp. 56-69
Author(s):  
Derya Köseoğlu ◽  
Gülnur Take ◽  
Banu Aktaş Yılmaz ◽  
Erdal Kan ◽  
Nuri Çakır

Background: Osteoporosis is a metabolic skeletal disease with low bone mass and bone microarchitectural disorganization. Thiazolidinediones (TZD) increase insulin sensitivity through activation of peroxisome proliferator-activated receptor gamma (PPARγ). One of the most important side effects of this drugs is its effects on bone, especially in postmenopausal women. The purpose of this study was to evaluate the effect of diabetes mellitus (DM), insulin, and TZDs on bone in postmenopausal Wistar rats. Methods: Sixteen postmenopausal Wistar rats were divided into four groups: (i) control group, (ii) Streptozotocin-induced DM group without treatment, (iii) Streptozotocin-induced DM group with insulin therapy, and (iv) Streptozotocin-induced DM group receiving rosiglitazone. Pictures of the obtained samples were taken under computer-equipped photo-light microscope, and bone tissue ratios were calculated in an area of 1 mm2. In this area, trabecular thicknesses were measured from six randomly selected regions. In addition, femoral neck regions were determined by measuring the farthest distance. Results: Compared to the control group, trabecular thicknesses were decreased in the uncontrolled DM and rosiglitazone groups. In the rosiglitazone-treated group, trabecular thickness was decreased compared to the uncontrolled DM group. The histological examination of the bones showed that uncontrolled DM and rosiglitazone treatment negatively affected the osteoblast and osteocyte activity. Insulin-treated group had a similar histologic examination compared to the control group. Conclusion: Our study showed that DM had unfavorable effects on bones, and rosiglitazone further exerts this effect. However, the negative effect of DM may be neutralized with the use of insulin. Keywords: diabetes mellitus, bone, osteoporosis, bone histomorphometry, rosiglitazone, insulin, thiazolidinediones


2022 ◽  
Vol 12 (1) ◽  
pp. 112-120
Author(s):  
Jieqi Gong ◽  
Huanhua Lu

The objective of this study was to investigate the molecular mechanism of the histopathological characteristics of liver cirrhosis (LC) complicated with acute kidney injury (AKI) and the signaling pathway of silent information regulator 1 (SIRT1)-peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) during the pathogenesis of LC. 20 healthy male rats with AKI complicated by laparoscopic cholecystectomy were selected and divided randomly into control group (C group), lipopolysaccharide (LPS) group, bile duct ligation (BDL) group, and model group (lipopolysaccharide+BDL) (D group). The indexes of all the rats were determined, including serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), sarcoplasmic enzyme (Scr), and blood urea nitrogen (BUN); the SIRT1 and PGC-1α expressions in renal tissues of rats from each group was detected. Results showed that the AST and ALT levels in BDL group and D group were higher markedly than those before surgery (P < 0.05). The serum levels of Scr and BUN in D group 4 hours after LPS injection increased hugely compared with before injection (P < 0.05). Compared with BDL group, the protein levels of SIRT1 and PGC-1α in renal tissue of group D were decreased sharply (P < 0.05), and the SIRT1 protein expression was positively correlated with PGC-1α (r = 0.836 and P < 0.01). When LC were complicated with AKI, SIRT1 activity was reduced and PGC-1α expression was inhibited. Moreover, SIRT1-PGC-1α signaling pathway played a protective role in pathogenesis of LC complicated with AKI.


2006 ◽  
Vol 290 (2) ◽  
pp. E251-E257 ◽  
Author(s):  
Sarah J. Lessard ◽  
Zhi-Ping Chen ◽  
Matthew J. Watt ◽  
Michael Hashem ◽  
Julianne J. Reid ◽  
...  

Rosiglitazone (RSG) is an insulin-sensitizing thiazolidinedione (TZD) that exerts peroxisome proliferator-activated receptor-γ (PPARγ)-dependent and -independent effects. We tested the hypothesis that part of the insulin-sensitizing effect of RSG is mediated through the action of AMP-activated protein kinase (AMPK). First, we determined the effect of acute (30–60 min) incubation of L6 myotubes with RSG on AMPK regulation and palmitate oxidation. Compared with control (DMSO), 200 μM RSG increased ( P < 0.05) AMPKα1 activity and phosphorylation of AMPK (Thr172). In addition, acetyl-CoA carboxylase (Ser218) phosphorylation and palmitate oxidation were increased ( P < 0.05) in these cells. To investigate the effects of chronic RSG treatment on AMPK regulation in skeletal muscle in vivo, obese Zucker rats were randomly allocated into two experimental groups: control and RSG. Lean Zucker rats were treated with vehicle and acted as a control group for obese Zucker rats. Rats were dosed daily for 6 wk with either vehicle (0.5% carboxymethylcellulose, 100 μl/100 g body mass), or 3 mg/kg RSG. AMPKα1 activity was similar in muscle from lean and obese animals and was unaffected by RSG treatment. AMPKα2 activity was ∼25% lower in obese vs. lean animals ( P < 0.05) but was normalized to control values after RSG treatment. ACC phosphorylation was decreased with obesity ( P < 0.05) but restored to the level of lean controls with RSG treatment. Our data demonstrate that RSG restores AMPK signaling in skeletal muscle of insulin-resistant obese Zucker rats.


2019 ◽  
Vol 31 (8) ◽  
pp. 1401
Author(s):  
Silvana R. Ferreira ◽  
Leandro M. Vélez ◽  
Maria F. Heber ◽  
Giselle A. Abruzzese ◽  
Alicia B. Motta

It is known that androgen excess induces changes in fetal programming that affect several physiological pathways. Peroxisome proliferator-activated receptors (PPARs) α, δ and γ are key mediators of female reproductive functions, in particular in uterine tissues. Thus, we aimed to study the effect of prenatal hyperandrogenisation on the uterine PPAR system. Rats were treated with 2mg testosterone from Day 16 to 19 of pregnancy. Female offspring (PH group) were followed until 90 days of life, when they were killed. The PH group exhibited an anovulatory phenotype. We quantified uterine mRNA levels of PPARα (Ppara), PPARδ (Ppard), PPARγ (Pparg), their regulators peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Ppargc1a) and nuclear receptor co-repressor 1 (Ncor1) and cyclo-oxygenase (COX)-2 (Ptgs2), and assessed the lipid peroxidation (LP) index and levels of glutathione (GSH) and prostaglandin (PG) E2. The PH group showed decreased levels of all uterine PPAR isoforms compared with the control group. In addition, PGE2 and Ptgs2 levels were increased in the PH group, which led to a uterine proinflammatory environment, as was LP, which led to a pro-oxidant status that GSH was not able to compensate for. These results suggest that prenatal exposure to androgen excess has a fetal programming effect that affects the gene expression of PPAR isoforms, and creates a misbalanced oxidant–antioxidant state and a proinflammatory status.


2020 ◽  
Vol 127 (11) ◽  
pp. 1347-1361 ◽  
Author(s):  
Xin Bi ◽  
Takashi Kuwano ◽  
Paul C. Lee ◽  
John S. Millar ◽  
Li Li ◽  
...  

Rationale: Single-nucleotide polymorphisms near the ILRUN (inflammation and lipid regulator with ubiquitin-associated–like and NBR1 [next to BRCA1 gene 1 protein]-like domains) gene are genome-wide significantly associated with plasma lipid traits and coronary artery disease (CAD), but the biological basis of this association is unknown. Objective: To investigate the role of ILRUN in plasma lipid and lipoprotein metabolism. Methods and Results: ILRUN encodes a protein that contains a ubiquitin-associated–like domain, suggesting that it may interact with ubiquitinylated proteins. We generated mice globally deficient for Ilrun and found they had significantly lower plasma cholesterol levels resulting from reduced liver lipoprotein production. Liver transcriptome analysis uncovered altered transcription of genes downstream of lipid-related transcription factors, particularly PPARα (peroxisome proliferator-activated receptor alpha), and livers from Ilrun -deficient mice had increased PPARα protein. Human ILRUN was shown to bind to ubiquitinylated proteins including PPARα, and the ubiquitin-associated–like domain of ILRUN was found to be required for its interaction with PPARα. Conclusions: These findings establish ILRUN as a novel regulator of lipid metabolism that promotes hepatic lipoprotein production. Our results also provide functional evidence that ILRUN may be the casual gene underlying the observed genetic associations with plasma lipids at 6p21 in human.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
M. Ebrahimi ◽  
M. A. Rajion ◽  
Y. M. Goh ◽  
A. Q. Sazili ◽  
J. T. Schonewille

This study was conducted to determine the effects of feeding oil palm frond silage based diets with added linseed oil (LO) containing highα-linolenic acid (C18:3n-3), namely, high LO (HLO), low LO (LLO), and without LO as the control group (CON) on the fatty acid (FA) composition of subcutaneous adipose tissue and the gene expression of peroxisome proliferator-activated receptor (PPAR)α, PPAR-γ, and stearoyl-CoA desaturase (SCD) in Boer goats. The proportion of C18:3n-3 in subcutaneous adipose tissue was increased (P<0.01) by increasing the LO in the diet, suggesting that the FA from HLO might have escaped ruminal biohydrogenation. Animals fed HLO diets had lower proportions of C18:1 trans-11, C18:2n-6, CLA cis-9 trans-11, and C20:4n-6 and higher proportions of C18:3n-3, C22:5n-3, and C22:6n-3 in the subcutaneous adipose tissue than animals fed the CON diets, resulting in a decreased n-6:n-3 fatty acid ratio (FAR) in the tissue. In addition, feeding the HLO diet upregulated the expression of PPAR-γ(P<0.05) but downregulated the expression of SCD (P<0.05) in the adipose tissue. The results of the present study show that LO can be safely incorporated in the diets of goats to enrich goat meat with potential health beneficial FA (i.e., n-3 FA).


PPAR Research ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Chang Jiang ◽  
Shuhao Liu ◽  
Yuanwu Cao ◽  
Hongping Shan

Diabetes mellitus is a multiorgan disorder affecting many types of connective tissues, including bone and cartilage. High glucose could accelerate the autophagy in nucleus pulposus (NP) cells. In our present study, we investigated whether peroxisome proliferator-activated receptor γ (PPAR-γ) pathway is involved into autophagy regulation in NP cells under high glucose condition. After NP cells were treated with different high glucose concentrations for 72 hours, the rate of autophagy increased. Moreover, the levels of PPARγ, Beclin-1, and LC3II were significantly increased and p62 was significantly decreased compared to control group. Then, NP cells were treated with high glucose plus PPARγ agonist or PPARγ antagonist, respectively. The rate of autophagy and the levels of Beclin-1 and LC3II increased, but p62 decreased when PPARγ agonist was used. On the contrary, the rate of autophagy and the levels of Beclin-1 and LC3II decreased, while p62 increased when PPARγ antagonist was added. These results suggested that autophagy induced by high glucose in NP cells was through PPARγ-dependent pathway.


Sign in / Sign up

Export Citation Format

Share Document