scholarly journals Health Status and Stress in Different Categories of Racing Pigeons

Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2686
Author(s):  
Marjan Kastelic ◽  
Igor Pšeničnik ◽  
Gordana Gregurić Gračner ◽  
Nina Čebulj Kadunc ◽  
Renata Lindtner Knific ◽  
...  

The influence of different stress parameters in racing pigeon flocks, such as the presence of diseases and environmental conditions at the time of the races, were described. A total of 96 racing pigeons from 4 pigeon flocks were examined, and health monitoring was carried out. No helminth eggs and coccidia were found. Trichomonas sp. was confirmed in subclinical form. Paramyxoviruses and avian influenza viruses were not confirmed, but circovirus infections were confirmed in all flocks. Chlamydia psittaci was confirmed in one flock. Blood samples were collected, and HI antibody titers against paramyxoviruses before and 25 days after vaccination were determined. To improve the conditions during racing and the welfare of the pigeons, critical points were studied with regard to stress factors during the active training season. Serum corticosterone levels were measured in the blood serum of four different categories of pigeons from each flock. Corticosterone levels were almost twice as high in pigeons from the category that were active throughout the racing season, including medium- and long-distance racing, compared to the other three categories that were not racing actively. Within five hours of the finish of a race, the average serum corticosterone level was 59.4 nmol/L in the most physically active category. The average serum corticosterone level in this category remained at 37.5 nmol/L one month after the last race.

2020 ◽  
Vol 2020 ◽  
pp. 1-22 ◽  
Author(s):  
Yi Zheng ◽  
Meimei Wu ◽  
Ting Gao ◽  
Li Meng ◽  
Xiaowei Ding ◽  
...  

Ample evidence suggests that estrogens have strong influences on the occurrence of stress-related mood disorders, but the underlying mechanisms remain poorly understood. Through multiple approaches, we demonstrate that the G protein-coupled estrogen receptor (GPER) is widely distributed along the HPA axis and in brain structures critically involved in mood control. Genetic ablation of GPER in the rat resulted in significantly lower basal serum corticosterone level but enhanced ACTH release in response to acute restraint stress, especially in the female. GPER-/- rats of either sex displayed increased anxiety-like behaviors and deficits in learning and memory. Additionally, GPER deficiency led to aggravation of anxiety-like behaviors following single-prolonged stress (SPS). SPS caused significant decreases in serum corticosterone in WT but not in GPER-deficient rats. The results highlight an important role of GPER at multiple sites in regulation of the HPA axis and mood.


2014 ◽  
Vol 56 (3) ◽  
pp. 191-195
Author(s):  
Dalva Assunção Portari Mancini ◽  
Aparecida Santo Pietro Pereira ◽  
Rita Maria Zucatelli Mendonça ◽  
Adelia Hiroko Nagamori Kawamoto ◽  
Rosely Cabette Barbosa Alves ◽  
...  

Equines are susceptible to respiratory viruses such as influenza and parainfluenza. Respiratory diseases have adversely impacted economies all over the world. This study was intended to determine the presence of influenza and parainfluenza viruses in unvaccinated horses from some regions of the state of São Paulo, Brazil. Blood serum collected from 72 equines of different towns in this state was tested by hemagglutination inhibition test to detect antibodies for both viruses using the corresponding antigens. About 98.6% (71) and 97.2% (70) of the equines responded with antibody protective titers (≥ 80 HIU/25µL) H7N7 and H3N8 subtypes of influenza A viruses, respectively. All horses (72) also responded with protective titers (≥ 80) HIU/25µL against the parainfluenza virus. The difference between mean antibody titers to H7N7 and H3N8 subtypes of influenza A viruses was not statistically significant (p > 0.05). The mean titers for influenza and parainfluenza viruses, on the other hand, showed a statistically significant difference (p < 0.001). These results indicate a better antibody response from equines to parainfluenza 3 virus than to the equine influenza viruses. No statistically significant differences in the responses against H7N7 and H3N8 subtypes of influenza A and parainfluenza 3 viruses were observed according to the gender (female, male) or the age (≤ 2 to 20 years-old) groups. This study provides evidence of the concomitant presence of two subtypes of the equine influenza A (H7N7 and H3N8) viruses and the parainfluenza 3 virus in equines in Brazil. Thus, it is advisable to vaccinate equines against these respiratory viruses.


1993 ◽  
Vol 13 (7) ◽  
pp. 801-813
Author(s):  
S.M. Filteau ◽  
T.J. Kaido ◽  
Maureen P. O'Grady ◽  
Robert A. Menzies ◽  
Nicholas R.S. Hall

Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 682
Author(s):  
Yasmina K. Mahmoud ◽  
Ahmed A. Ali ◽  
Heba M. A. Abdelrazek ◽  
Tahany Saleh Aldayel ◽  
Mohamed M. Abdel-Daim ◽  
...  

The ameliorative effect of L-arginine (LA) and L-carnitine (LC) against fipronil (FPN)-induced neurotoxicity was explored. In this case, 36 adult male rats were randomly divided into six groups: group I received distilled water, group II received 500 mg/kg LA, group III received 100 mg/kg LC, group IV received 4.85 mg/kg FPN, group V received 4.85 mg/kg FPN and 500 mg/kg LA and group VI received 4.85 mg/kg FPN and 100 mg/kg LC for 6 weeks. Cognitive performance was assessed using Barnes maze (BM). Serum corticosterone, brain total antioxidant capacity (TAC), malondialdehyde (MDA) and dopamine were measured. Histopathology and immunohistochemistry of ionized calcium-binding adaptor (Iba-1), doublecortin (DCX) and serotonin (S-2A) receptors were performed. Fipronil induced noticeable deterioration in spatial learning and memory performance. In addition, FPN significantly (p < 0.05) diminished brain antioxidant defense system and dopamine coincide with elevated serum corticosterone level. Histopathological examination revealed degenerative and necrotic changes. Furthermore, Iba-1 and DCX were significantly expressed in cortex and hippocampus whereas S-2A receptors were significantly lowered in FPN group. However, administration of LA or LC alleviated FPN-induced deteriorations. In conclusion, LA and LC could be prospective candidates for mitigation of FPN-induced neurotoxicity via their antioxidant, anti-inflammatory and neuropotentiating effects.


2003 ◽  
Vol 284 (2) ◽  
pp. R520-R530 ◽  
Author(s):  
Jay Campisi ◽  
Ted H. Leem ◽  
Ben N. Greenwood ◽  
Michael K. Hansen ◽  
Albert Moraska ◽  
...  

The mechanism(s) for how physically active organisms are resistant to many damaging effects of acute stressor exposure is unknown. Cellular induction of heat-shock proteins (e.g., HSP72) is one successful strategy used by the cell to survive the damaging effects of stress. It is possible, therefore, that the stress-buffering effect of physical activity may be due to an improved HSP72 response to stress. Thus the purpose of the current study was to determine whether prior voluntary freewheel running facilitates the stress-induced induction of HSP72 in central (brain), peripheral, and immune tissues. Adult male Fischer 344 rats were housed with either a mobile running wheel (Active) or a locked, immobile wheel [sedentary (Sed)] for 8 wk before stressor exposure. Rats were exposed to either inescapable tail-shock stress (IS; 100 1.6-mA tail shocks, 5-s duration, 60-s intertrial interval), exhaustive exercise stress (EXS; treadmill running to exhaustion), or no stress (controls). Blood, brain, and peripheral tissues were collected 2 h after stressor termination. The kinetics of HSP72 induction after IS was determined in cultured mesenteric lymph node cells. Activation of the stress response was verified by measuring serum corticosterone (RIA). Tissue and cellular HSP72 content were measured using HSP72 ELISA in cell lysates. Both Active and Sed rats had elevated levels of serum corticosterone after stress. In contrast, Active but not Sed rats exposed to IS and/or EXS had elevated HSP72 in dorsal vagal complex, frontal cortex, hippocampus, pituitary, adrenal, liver, spleen, mesenteric lymph nodes, and heart. In addition, Active rats exposed to IS demonstrated a faster induction of lymphocyte HSP72 compared with Sed rats. Thus Active rats responded to stress with both greater and faster HSP72 responses compared with Sed rats. These results indicate that previous physical activity potentiates HSP72 expression after a wide range of stressors. Facilitated induction of HSP72 may contribute to the increased stress resistance previously reported in physically active organisms.


2015 ◽  
Vol 90 (2) ◽  
pp. 1116-1128 ◽  
Author(s):  
Greg A. Kirchenbaum ◽  
Donald M. Carter ◽  
Ted M. Ross

ABSTRACTBroadly reactive antibodies targeting the conserved hemagglutinin (HA) stalk region are elicited following sequential infection or vaccination with influenza viruses belonging to divergent subtypes and/or expressing antigenically distinct HA globular head domains. Here, we demonstrate, through the use of novel chimeric HA proteins and competitive binding assays, that sequential infection of ferrets with antigenically distinct seasonal H1N1 (sH1N1) influenza virus isolates induced an HA stalk-specific antibody response. Additionally, stalk-specific antibody titers were boosted following sequential infection with antigenically distinct sH1N1 isolates in spite of preexisting, cross-reactive, HA-specific antibody titers. Despite a decline in stalk-specific serum antibody titers, sequential sH1N1 influenza virus-infected ferrets were protected from challenge with a novel H1N1 influenza virus (A/California/07/2009), and these ferrets poorly transmitted the virus to naive contacts. Collectively, these findings indicate that HA stalk-specific antibodies are commonly elicited in ferrets following sequential infection with antigenically distinct sH1N1 influenza virus isolates lacking HA receptor-binding site cross-reactivity and can protect ferrets against a pathogenic novel H1N1 virus.IMPORTANCEThe influenza virus hemagglutinin (HA) is a major target of the humoral immune response following infection and/or seasonal vaccination. While antibodies targeting the receptor-binding pocket of HA possess strong neutralization capacities, these antibodies are largely strain specific and do not confer protection against antigenic drift variant or novel HA subtype-expressing viruses. In contrast, antibodies targeting the conserved stalk region of HA exhibit broader reactivity among viruses within and among influenza virus subtypes. Here, we show that sequential infection of ferrets with antigenically distinct seasonal H1N1 influenza viruses boosts the antibody responses directed at the HA stalk region. Moreover, ferrets possessing HA stalk-specific antibody were protected against novel H1N1 virus infection and did not transmit the virus to naive contacts.


Sign in / Sign up

Export Citation Format

Share Document