scholarly journals A Novel Structure Harboring blaCTX-M-27 on IncF Plasmids in Escherichia coli Isolated from Swine in China

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 387
Author(s):  
Yan Zhang ◽  
Yin-Huan Sun ◽  
Jiang-Yang Wang ◽  
Man-Xia Chang ◽  
Qiu-Yun Zhao ◽  
...  

The aim of this study was to elucidate the prevalence of blaCTX-M-27-producing Escherichia coli and transmission mechanisms of blaCTX-M-27 from swine farms in China. A total of 333 E. coli isolates were collected from two farms from 2013 to 2016. Thirty-two CTX-M-27-positive E. coli were obtained, and all were multidrug-resistant. Pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) profiles indicated a wide range of strain types that carried blaCTX-M-27, and the sequence type ST10 predominated. Conjugation, replicon typing, S1-PFGE and hybridization experiments confirmed that 28 out of 32 CTX-M-27 positive isolates carried blaCTX-M-27 genes on plasmids F18:A-:B10 (16) and F24:A-:B1 (12).The blaCTX-M-27 genes for 24 isolates were transmitted by plasmids with sizes ranging from 40 to 155 kb. A comparative analysis with blaCTX-M-27-plasmids indicated that the tra-trb region of F24:A-:B1 plasmids was destroyed by insertion of a complex region (eight isolates) and a novel structure containing blaCTX-M-27 in the F18:A-:B10 plasmids (12 isolates). The novel structure increased the stability of the blaCTX-M-27 gene in E. coli. This study indicated that the predominant vehicle for blaCTX-M-27 transmission has diversified over time and that control strategies to limit blaCTX-M-27 transmission in farm animals are necessary.

2011 ◽  
Vol 77 (20) ◽  
pp. 7142-7146 ◽  
Author(s):  
Anne-Kathrin Schink ◽  
Kristina Kadlec ◽  
Stefan Schwarz

ABSTRACTIn this study, 417Escherichia coliisolates from defined disease conditions of companion and farm animals collected in the BfT-GermVet study were investigated for the presence of extended-spectrum β-lactamase (ESBL) genes. Three ESBL-producingE. coliisolates were identified among the 100 ampicillin-resistant isolates. TheE. coliisolates 168 and 246, of canine and porcine origins, respectively, harboredblaCTX-M-1, and the canine isolate 913 harboredblaCTX-M-15, as confirmed by PCR and sequence analysis. The isolates 168 and 246 belonged to the novel multilocus sequence typing (MLST) types ST1576 and ST1153, respectively, while isolate 913 had the MLST type ST410. The ESBL genes were located on structurally related IncN plasmids in isolates 168 and 246 and on an IncF plasmid in isolate 913. TheblaCTX-M-1upstream regions of plasmids pCTX168 and pCTX246 were similar, whereas the downstream regions showed structural differences. The genetic environment of theblaCTX-M-15gene on plasmid pCTX913 differed distinctly from that of bothblaCTX-M-1genes. Detailed sequence analysis showed that the integration of insertion sequences, as well as interplasmid recombination events, accounted for the structural variability in theblaCTX-Mgene regions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Victoria L. Barlow ◽  
Shu-Jung Lai ◽  
Chia-Yu Chen ◽  
Cheng-Han Tsai ◽  
Shih-Hsiung Wu ◽  
...  

AbstractAcinetobacter baumannii is a prevalent pathogen that can rapidly acquire resistance to antibiotics. Indeed, multidrug-resistant A. baumannii is a major cause of hospital-acquired infections and has been recognised by the World Health Organization as one of the most threatening bacteria to our society. Resistance-nodulation-division (RND) type multidrug efflux pumps have been demonstrated to convey antibiotic resistance to a wide range of pathogens and are the primary resistance mechanism employed by A. baumannii. A component of an RND pump in A. baumannii, AdeT1, was previously demonstrated to enhance the antimicrobial resistance of Escherichia coli. Here, we report the results of experiments which demonstrate that wild-type AdeT1 does not confer antimicrobial resistance in E. coli, highlighting the importance of verifying protein production when determining minimum inhibitory concentrations (MICs) especially by broth dilution. Nevertheless, using an agar-based MIC assay, we found that propionylation of Lys280 on AdeT1 renders E. coli cells more resistant to erythromycin.


2021 ◽  
Vol 42 (2) ◽  
pp. 735-746
Author(s):  
Raffaella Menegheti Mainardi ◽  
◽  
Arthur Roberto da Costa ◽  
Roberta Torres Chideroli ◽  
Leonardo Mantovani Favero ◽  
...  

Neonatal diarrhea is the main cause of early mortality and morbidity in farm animals and the source of huge, direct and indirect, economic husbandry losses. Escherichia coli, a common harmless commensal bacterium, can turn into a main diarrheal pathogen through antibiotic resistance and the expression of genetically acquired virulence factors. In this study, fecal samples obtained from eight farms of animals with clinical signs characteristic of diarrhea were subjected to culture and bacterial isolation. Colonies suggestive of E. coli were identified through morphological and biochemical characteristics. Susceptibility tests to the main veterinary antibacterial agents were conducted using agar disk diffusion followed by phenotypical detection of extended-spectrum ?-lactamase (ESBL). A total of 301 colonies were characterized as E. coli and, out of the 192 that were tested, 134 showed resistance to three or more classes of antimicrobial drugs and were classified as multidrug resistant (MDR), and 14 were ESBL positive. Bacterial DNA was extracted for multiplex PCR (mPCR) using primers to detect ten different genes of diarrheagenic E. coli (DEC). Thirty-six bacterial strains were positive in the mPCR assay, 28 of which were classified as enterotoxigenic E. coli (ETEC) and eight as enteropathogenic E. coli (EPEC). The high prevalence of MDR strains and the detection of ESBL denote the presence of resistance genes in animal husbandry; thus, it is important to isolate and characterize those pathogens and test antimicrobial sensitivity in vitro to avoid ineffective treatments and the spread of antimicrobial resistance, which are the major concerns of Public Health and One Health.


Author(s):  
Bo Yang ◽  
Bojie Xu ◽  
Ruicheng Yang ◽  
Jiyang Fu ◽  
Liang Li ◽  
...  

AbstractOur previous studies have shown that meningitic Escherichia coli can colonize the brain and cause neuroinflammation. Controlling the balance of inflammatory responses in the host central nervous system is particularly vital. Emerging evidence has shown the important regulatory roles of long non-coding RNAs (lncRNAs) in a wide range of biological and pathological processes. However, whether lncRNAs participate in the regulation of meningitic E. coli-mediated neuroinflammation remains unknown. In the present study, we characterized a cytoplasm-enriched antisense lncRNA DDIT4-AS1, which showed similar concordant expression patterns with its parental mRNA DDIT4 upon E. coli infection. DDIT4-AS1 modulated DDIT4 expression at both mRNA and protein levels. Mechanistically, DDIT4-AS1 promoted the stability of DDIT4 mRNA through RNA duplex formation. DDIT4-AS1 knockdown and DDIT4 knockout both attenuated E. coli-induced NF-κB signaling as well as pro-inflammatory cytokines expression, and DDIT4-AS1 regulated the inflammatory response by targeting DDIT4. In summary, our results show that DDIT4-AS1 promotes E. coli-induced neuroinflammatory responses by enhancing the stability of DDIT4 mRNA through RNA duplex formation, providing potential nucleic acid targets for new therapeutic interventions in the treatment of bacterial meningitis.


2014 ◽  
Vol 21 (7) ◽  
pp. 930-939 ◽  
Author(s):  
Valéria Szijártó ◽  
Jolanta Lukasiewicz ◽  
Tomasz K. Gozdziewicz ◽  
Zoltán Magyarics ◽  
Eszter Nagy ◽  
...  

ABSTRACTTheEscherichia colilineage sequence type 131 (ST131)-O25b:H4 is a globally spread multidrug-resistant clone responsible for a great proportion of extraintestinal infections. Driven by the significant medical needs associated with this successful pathogenic lineage, we generated murine monoclonal antibodies (MAbs) against its lipopolysaccharide (LPS) O25b antigen in order to develop quick diagnostic tests. Murine monoclonal antibodies were generated by immunizing mice with whole killed nonencapsulated ST131-O25bE. colicells and screening hybridoma supernatants for binding to purified LPS molecules obtained from anE. coliST131-O25b clinical isolate. The MAbs selected for further study bound to the surface of liveE. coliO25b strains irrespective of the capsular type expressed, while they did not bind to bacteria or purified LPS from other serotypes, including the related classical O25 antigen (O25a). Using these specific MAbs, we developed a latex bead-based agglutination assay that has greater specificity and is quicker and simpler than the currently available typing methods. The high specificities of these MAbs can be explained by the novel structure of the O25b repeating unit elucidated in this article. Based on comparative analysis by nuclear magnetic resonance (NMR) and mass spectrometry, theN-acetyl-fucose in the O25a O-antigen had been replaced byO-acetyl-rhamnose in the O25b repeating unit. The genetic determinants responsible for this structural variation were identified by aligning the corresponding genetic loci and were confirmed bytrans-complementation of a rough mutant by the subserotype-specific fragments of therfboperons.


1993 ◽  
Vol 27 (3-4) ◽  
pp. 267-270 ◽  
Author(s):  
M. T. Augoustinos ◽  
N. A. Grabow ◽  
B. Genthe ◽  
R. Kfir

A fluorogenic β-glucuronidase assay comprising membrane filtration followed by selective enumeration on m-FC agar at 44.5°C and further confirmation using tlie 4-metliylumbelliferyl-β-D-glucuronide (MUG) containing medium was evaluated for the detection of Escherichia coli in water. A total of 200 typical blue and non-typical blue colonies were isolated from sea and fresh water samples using initial selective enumeration on m-FC agar. Pure cultures of the selected colonies were further tested using the MUG assay and identified using the API 20E method. Of the colonies tested which were shown to be positive using the MUG assay 99.4% were Escherichia coli. The results of this study indicate the combination of the m-FC method followed by the MUG assay to be highly efficient for the selection and confirmation of E. coli from a wide range of environmental waters.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 466
Author(s):  
Herbert Galler ◽  
Josefa Luxner ◽  
Christian Petternel ◽  
Franz F. Reinthaler ◽  
Juliana Habib ◽  
...  

In recent years, antibiotic-resistant bacteria with an impact on human health, such as extended spectrum β-lactamase (ESBL)-containing Enterobacteriaceae, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE), have become more common in food. This is due to the use of antibiotics in animal husbandry, which leads to the promotion of antibiotic resistance and thus also makes food a source of such resistant bacteria. Most studies dealing with this issue usually focus on the animals or processed food products to examine the antibiotic resistant bacteria. This study investigated the intestine as another main habitat besides the skin for multiresistant bacteria. For this purpose, faeces samples were taken directly from the intestines of swine (n = 71) and broiler (n = 100) during the slaughter process and analysed. All samples were from animals fed in Austria and slaughtered in Austrian slaughterhouses for food production. The samples were examined for the presence of ESBL-producing Enterobacteriaceae, MRSA, MRCoNS and VRE. The resistance genes of the isolated bacteria were detected and sequenced by PCR. Phenotypic ESBL-producing Escherichia coli could be isolated in 10% of broiler casings (10 out of 100) and 43.6% of swine casings (31 out of 71). In line with previous studies, the results of this study showed that CTX-M-1 was the dominant ESBL produced by E. coli from swine (n = 25, 83.3%) and SHV-12 from broilers (n = 13, 81.3%). Overall, the frequency of positive samples with multidrug-resistant bacteria was lower than in most comparable studies focusing on meat products.


2021 ◽  
Vol 22 (11) ◽  
pp. 5905
Author(s):  
Olivia M. Grünzweil ◽  
Lauren Palmer ◽  
Adriana Cabal ◽  
Michael P. Szostak ◽  
Werner Ruppitsch ◽  
...  

Marine mammals have been described as sentinels of the health of marine ecosystems. Therefore, the aim of this study was to investigate (i) the presence of extended-spectrum β-lactamase (ESBL)- and AmpC-producing Enterobacterales, which comprise several bacterial families important to the healthcare sector, as well as (ii) the presence of Salmonella in these coastal animals. The antimicrobial resistance pheno- and genotypes, as well as biocide susceptibility of Enterobacterales isolated from stranded marine mammals, were determined prior to their rehabilitation. All E. coli isolates (n = 27) were screened for virulence genes via DNA-based microarray, and twelve selected E. coli isolates were analyzed by whole-genome sequencing. Seventy-one percent of the Enterobacterales isolates exhibited a multidrug-resistant (MDR) pheno- and genotype. The gene blaCMY (n = 51) was the predominant β-lactamase gene. In addition, blaTEM-1 (n = 38), blaSHV-33 (n = 8), blaCTX-M-15 (n = 7), blaOXA-1 (n = 7), blaSHV-11 (n = 3), and blaDHA-1 (n = 2) were detected. The most prevalent non-β-lactamase genes were sul2 (n = 38), strA (n = 34), strB (n = 34), and tet(A) (n = 34). Escherichia coli isolates belonging to the pandemic sequence types (STs) ST38, ST167, and ST648 were identified. Among Salmonella isolates (n = 18), S. Havana was the most prevalent serotype. The present study revealed a high prevalence of MDR bacteria and the presence of pandemic high-risk clones, both of which are indicators of anthropogenic antimicrobial pollution, in marine mammals.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 406
Author(s):  
Zuhura I. Kimera ◽  
Fauster X. Mgaya ◽  
Gerald Misinzo ◽  
Stephen E. Mshana ◽  
Nyambura Moremi ◽  
...  

We determined the phenotypic profile of multidrug-resistant (MDR) Escherichia coli isolated from 698 samples (390 and 308 from poultry and domestic pigs, respectively). In total, 562 Enterobacteria were isolated. About 80.5% of the isolates were E. coli. Occurrence of E. coli was significantly higher among domestic pigs (73.1%) than in poultry (60.5%) (p = 0.000). In both poultry and domestic pigs, E. coli isolates were highly resistant to tetracycline (63.5%), nalidixic acid (53.7%), ampicillin (52.3%), and trimethoprim/sulfamethoxazole (50.9%). About 51.6%, 65.3%, and 53.7% of E. coli were MDR, extended-spectrum beta lactamase-producing enterobacteriaceae (ESBL-PE), and quinolone-resistant, respectively. A total of 68% of the extended-spectrum beta lactamase (ESBL) producers were also resistant to quinolones. For all tested antibiotics, resistance was significantly higher in ESBL-producing and quinolone-resistant isolates than the non-ESBL producers and non-quinolone-resistant E. coli. Eight isolates were resistant to eight classes of antimicrobials. We compared phenotypic with genotypic results of 20 MDR E. coli isolates, ESBL producers, and quinolone-resistant strains and found 80% harbored blaCTX-M, 15% aac(6)-lb-cr, 10% qnrB, and 5% qepA. None harbored TEM, SHV, qnrA, qnrS, qnrC, or qnrD. The observed pattern and level of resistance render this portfolio of antibiotics ineffective for their intended use.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 265
Author(s):  
Peter Kotsoana Montso ◽  
Caven Mguvane Mnisi ◽  
Collins Njie Ateba ◽  
Victor Mlambo

Preslaughter starvation and subacute ruminal acidosis in cattle are known to promote ruminal proliferation of atypical enteropathogenic Escherichia coli strains, thereby increasing the risk of meat and milk contamination. Using bacteriophages (henceforth called phages) to control these strains in the rumen is a potentially novel strategy. Therefore, this study evaluated the viability of phages and their efficacy in reducing E. coli O177 cells in a simulated ruminal fermentation system. Fourteen phage treatments were allocated to anaerobic serum bottles containing a grass hay substrate, buffered (pH 6.6–6.8) bovine rumen fluid, and E. coli O177 cells. The serum bottles were then incubated at 39 °C for 48 h. Phage titres quadratically increased with incubation time. Phage-induced reduction of E. coli O177 cell counts reached maximum values of 61.02–62.74% and 62.35–66.92% for single phages and phage cocktails, respectively. The highest E. coli O177 cell count reduction occurred in samples treated with vB_EcoM_366B (62.31%), vB_EcoM_3A1 (62.74%), vB_EcoMC3 (66.67%), vB_EcoMC4 (66.92%), and vB_EcoMC6 (66.42%) phages. In conclusion, lytic phages effectively reduced E. coli O177 cells under artificial rumen fermentation conditions, thus could be used as a biocontrol strategy in live cattle to reduce meat and milk contamination in abattoirs and milking parlours, respectively.


Sign in / Sign up

Export Citation Format

Share Document