scholarly journals The Vibriolysin-Like Protease VnpA and the Collagenase ColA Are Required for Full Virulence of the Bivalve Mollusks Pathogen Vibrio neptunius

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 391
Author(s):  
Fabián Galvis ◽  
Juan L. Barja ◽  
Manuel L. Lemos ◽  
Miguel Balado

Vibrio neptunius is an important pathogen of bivalve mollusks worldwide. Several metalloproteases have been described as virulence factors in species of Vibrio that are pathogenic to bivalves, but little is known about the contribution of these potential virulence factors to Vibrio neptunius pathogenesis. In silico analysis of the genome of V. neptunius strain PP-145.98 led to the identification of two hitherto uncharacterized chromosomal loci encoding a probable vibriolysin-like metalloprotease and a putative collagenase, which were designated VnpA and ColA, respectively. Single defective mutants of each gene were obtained in V. neptunius PP-145.98, and the phospholipase, esterase and collagenase activities were studied and compared with those of the wild-type strain. The results showed that the single inactivation of vnpA resulted in a 3-fold reduction in phospholipase/esterase activity. Inactivation of colA reduced the collagenase activity by 50%. Finally, infection challenges performed in oyster larvae showed that ΔvnpA and ΔcolA—single mutant strains of V. neptunius—are between 2–3-fold less virulent than the wild-type strain. Thus, the present work demonstrates that the production of both VnpA and ColA is required for the full virulence of the bivalve pathogen V. neptunius.

2005 ◽  
Vol 49 (4) ◽  
pp. 1495-1501 ◽  
Author(s):  
Ayush Kumar ◽  
Elizabeth A. Worobec

ABSTRACT Serratia marcescens is an important nosocomial agent known for causing various infections in immunocompromised individuals. Resistance of this organism to a broad spectrum of antibiotics makes the treatment of infections very difficult. This study was undertaken to identify multidrug resistance efflux pumps in S. marcescens. Three mutant strains of S. marcescens were isolated in vitro by the serial passaging of a wild-type strain in culture medium supplemented with ciprofloxacin, norfloxacin, or ofloxacin. Fluoroquinolone accumulation assays were performed to detect the presence of a proton gradient-dependent efflux mechanism. Two of the mutant strains were found to be effluxing norfloxacin, ciprofloxacin, and ofloxacin, while the third was found to efflux only ofloxacin. A genomic library of S. marcescens wild-type strain UOC-67 was constructed and screened for RND pump-encoding genes by using DNA probes for two putative RND pump-encoding genes. Two different loci were identified: sdeAB, encoding an MFP and an RND pump, and sdeCDE, encoding an MFP and two different RND pumps. Northern blot analysis revealed overexpression of sdeB in two mutant strains effluxing fluoroquinolones. Analysis of the sdeAB and sdeCDE loci in Escherichia coli strain AG102MB, deficient in the RND pump (AcrB), revealed that gene products of sdeAB are responsible for the efflux of a diverse range of substrates that includes ciprofloxacin, norfloxacin, ofloxacin, chloramphenicol, sodium dodecyl sulfate, ethidium bromide, and n-hexane, while those of sdeCDE did not result in any change in susceptibilities to any of these agents.


2006 ◽  
Vol 69 (11) ◽  
pp. 2758-2760 ◽  
Author(s):  
DARRELL O. BAYLES ◽  
GAYLEN A. UHLICH

A surprising facet of the Listeria monocytogenes genome is the presence of 15 genes that code for regulators in the Crp/Fnr family and include the virulence regulator PrfA. The genes under the transcriptional control of these regulators are currently undetermined, with the exception of some genes controlled by the major virulence regulator PrfA. Using 12 strains of L. monocytogenes, each with an inserted gene cassette that interrupts and renders nonfunctional a different L. monocytogenes strain F2365 Crp/Fnr regulator, we heat challenged each strain at 60°C with an immersed-coil heating apparatus, modeled the survivor data to calculate the underlying mean and mode of the heat resistance distribution for each strain, and compared the thermal tolerance of each mutant to the wild-type strain to determine if any of the Crp/Fnr mutants demonstrated altered heat tolerance. All 12 of the Crp/Fnr mutant strains tested had heat resistance characteristics similar to the wild-type strain (P > 0.05), indicating that mutations in these Crp/Fnr genes neither increased nor decreased the sensitivity of L. monocytogenes strain F2365 to mild heat.


2020 ◽  
Vol 6 (2) ◽  
pp. 86
Author(s):  
Marina Zoppo ◽  
Fabrizio Fiorentini ◽  
Cosmeri Rizzato ◽  
Mariagrazia Di Luca ◽  
Antonella Lupetti ◽  
...  

The Candida parapsilosis genome encodes for five agglutinin-like sequence (Als) cell-wall glycoproteins involved in adhesion to biotic and abiotic surfaces. The work presented here is aimed at analyzing the role of the two still uncharacterized ALS genes in C. parapsilosis, CpALS4790 and CpALS0660, by the generation and characterization of CpALS4790 and CpALS066 single mutant strains. Phenotypic characterization showed that both mutant strains behaved as the parental wild type strain regarding growth rate in liquid/solid media supplemented with cell-wall perturbing agents, and in the ability to produce pseudohyphae. Interestingly, the ability of the CpALS0660 null mutant to adhere to human buccal epithelial cells (HBECs) was not altered when compared with the wild-type strain, whereas deletion of CpALS4790 led to a significant loss of the adhesion capability. RT-qPCR analysis performed on the mutant strains in co-incubation with HBECs did not highlight significant changes in the expression levels of others ALS genes. In vivo experiments in a murine model of vaginal candidiasis indicated a significant reduction in CFUs recovered from BALB/C mice infected with each mutant strain in comparison to those infected with the wild type strain, confirming the involvement of CpAls4790 and CpAls5600 proteins in C. parapsilosis vaginal candidiasis in mice.


2010 ◽  
Vol 59 (11) ◽  
pp. 1275-1284 ◽  
Author(s):  
Stephen L. Michell ◽  
Rachel E. Dean ◽  
Jim E. Eyles ◽  
Margaret Gill Hartley ◽  
Emma Waters ◽  
...  

As there is currently no licensed vaccine against Francisella tularensis, the causative agent of tularaemia, the bacterium is an agent of concern as a potential bioweapon. Although F. tularensis has a low infectious dose and high associated mortality, it possesses few classical virulence factors. An analysis of the F. tularensis subspecies tularensis genome sequence has revealed the presence of a region containing genes with low sequence homology to part of the capBCADE operon of Bacillus anthracis. We have generated an isogenic capB mutant of F. tularensis subspecies tularensis SchuS4 and shown it to be attenuated. Furthermore, using BALB/c mice, we have demonstrated that this capB strain affords protection against significant homologous challenge with the wild-type strain. These data have important implications for the development of a defined and efficacious tularaemia vaccine.


2002 ◽  
Vol 184 (10) ◽  
pp. 2850-2853 ◽  
Author(s):  
Annie Conter ◽  
Rachel Sturny ◽  
Claude Gutierrez ◽  
Kaymeuang Cam

ABSTRACT The RcsCB His-Asp phosphorelay system regulates the expression of several genes of Escherichia coli, but the molecular nature of the inducing signal is still unknown. We show here that treatment of an exponentially growing culture of E. coli with the cationic amphipathic compound chlorpromazine (CPZ) stimulates expression of a set of genes positively regulated by the RcsCB system. This induction is abolished in rcsB or rcsC mutant strains. In addition, treatment with CPZ inhibits growth. The wild-type strain is able to recover from this inhibition and resume growth after a period of adaptation. In contrast, strains deficient in the RcsCB His-Asp phosphorelay system are hypersensitive to CPZ. These results suggest that cells must express specific RcsCB-regulated genes in order to cope with the CPZ-induced stress. This is the first report of the essential role of the RcsCB system in a stress situation. These results also strengthen the notion that alterations of the cell envelope induce a signal recognized by the RcsC sensor.


2008 ◽  
Vol 98 (6) ◽  
pp. 695-701 ◽  
Author(s):  
S. Li ◽  
C. C. Jochum ◽  
F. Yu ◽  
K. Zaleta-Rivera ◽  
L. Du ◽  
...  

Lysobacter enzymogenes C3 is a bacterial biological control agent that exhibits antagonism against multiple fungal pathogens. Its antifungal activity was attributed in part to lytic enzymes. In this study, a heat-stable antifungal factor (HSAF), an antibiotic complex consisting of dihydromaltophilin and structurally related macrocyclic lactams, was found to be responsible for antagonism by C3 against fungi and oomycetes in culture. HSAF in purified form exhibited inhibitory activity against a wide range of fungal and oomycetes species in vitro, inhibiting spore germination, and disrupting hyphal polarity in sensitive fungi. When applied to tall fescue leaves as a partially-purified extract, HSAF at 25 μg/ml and higher inhibited germination of conidia of Bipolaris sorokiniana compared with the control. Although application of HSAF at 12.5 μg/ml did not reduce the incidence of conidial germination, it inhibited appressorium formation and suppressed Bipolaris leaf spot development. Two mutant strains of C3 (K19 and ΔNRPS) that were disrupted in different domains in the hybrid polyketide synthase-nonribosomal peptide synthetase gene for HSAF biosynthesis and had lost the ability to produce HSAF were compared with the wild-type strain for biological control efficacy against Bipolaris leaf spot on tall fescue and Fusarium head blight, caused by Fusarium graminearum, on wheat. Both mutant strains exhibited decreased capacity to reduce the incidence and severity of Bipolaris leaf spot compared with C3. In contrast, the mutant strains were as efficacious as the wild-type strain in reducing the severity of Fusarium head blight. Thus, HSAF appears to be a mechanism for biological control by strain C3 against some, but not all, plant pathogenic fungi.


2001 ◽  
Vol 45 (6) ◽  
pp. 1649-1653 ◽  
Author(s):  
Hideyuki Fukuda ◽  
Ryuta Kishii ◽  
Masaya Takei ◽  
Masaki Hosaka

ABSTRACT Gatifloxacin (8-methoxy, 7-piperazinyl-3′-methyl) at the MIC selected mutant strains that possessed gyrA mutations at a low frequency (3.7 × 10−9) from wild-type strainStreptococcus pneumoniae IID553. AM-1147 (8-methoxy, 7-piperazinyl-3′-H) at the MIC or higher concentrations selected no mutant strains. On the other hand, the respective 8-H counterparts of these two compounds, AM-1121 (8-H, 7-piperazinyl-3′-methyl) and ciprofloxacin (8-H, 7-piperazinyl-3′-H), at one and two times the MIC selected mutant strains that possessed parC mutations at a high frequency (>2.4 × 10−6). The MIC of AM-1147 increased for the gyrA mutant strains but not for theparC mutant strains compared with that for the wild-type strain. These results suggest that fluoroquinolones that harbor 8-methoxy groups select mutant strains less frequently and prefer DNA gyrase, as distinct from their 8-H counterparts. The in vitro activities of gatifloxacin and AM-1147 are twofold higher against the wild-type strain, eight- and twofold higher against the first-stepparC and gyrA mutant strains, respectively, and two- to eightfold higher against the second-step gyrA andparC double mutant strains than those of their 8-H counterparts. These results indicate that the 8-methoxy group contributes to enhancement of antibacterial activity against target-altered mutant strains as well as the wild-type strain. It is hypothesized that the 8-methoxy group of gatifloxacin increases the level of target inhibition, especially against DNA gyrase, so that it is nearly the same as that for topoisomerase IV inhibition in the bacterial cell, leading to potent antibacterial activity and a low level of resistance selectivity.


2021 ◽  
Author(s):  
Zhudong Liu ◽  
Jie Xiao ◽  
Jianli Tang ◽  
Yang Liu ◽  
Ling Shuai ◽  
...  

Abstract Background: The interaction between acuC and spinosad biosynthesis is complex. In this study, acetoin utilization protein (acuC) was characterized. It is a type I histone deacetylase that is highly conserved in bacteria. This study first explored the effect of acuC on the growth and development of secondary metabolites of S. spinosa. Results: The knockout strain and overexpression strain were constructed separately with the shuttle vector pOJ260. The overexpression of the acuC gene affects the growth and phenotype of S. spinosa. Moreover, the spore production ability of the S. spinosa-acuC strain on solid medium was weaker than that of the wild-type strain. HPLC analysis of the fermentation products for the wild-type and mutant strains demonstrated that the yield of the overexpression strain was 87% higher than that of the wild-type strain. Conclusions: We concluded that the overexpression of acuC positively regulated the biosynthesis of spinosad and affected the acetylation pathway and the growth of S. spinosa. A comparative proteomic analysis between the wild-type and overexpression strains revealed related genes in different metabolic pathways that were affected. We envision that these results can be extended to other actinomycetes for secondary metabolite improvement.


2011 ◽  
Vol 51 (2) ◽  
pp. 179-183 ◽  
Author(s):  
Itamar Melo ◽  
Alex Moretini ◽  
Ana Cassiolato ◽  
Jane Faull

Development of Mutants ofConiothyrium Minitanswith Improved Efficiency for Control ofSclerotinia SclerotiorumConiothyrium minitans(CM) is hyperparasitic toSclerotinia sclerotiorum(SS), a pathogen of many economically important crops. In this paper, we describe the isolation of improved mutants of CM, using a UV - irradiation regime, with altered chitinase production and tolerance to high concentration of iprodione, which are effective against SS. Three out of the 59 mutants obtained inhibited the mycelial growth of CM. Infectivity of sclerotia by the new mutants was assayed by the plant-tissue-based system using carrot segments. More than 80% of sclerotia were colonized by the mutants and the wild-type CM. The mutant strains retained ability to produce significant amounts of chitinase. The mutants differed from their wild-type strain in appearance, morphology and sporulation. In conclusion, the results presented here provide evidence that the new biotypes ofC. minitansare effective in controllingS. sclerotiorum.


Sign in / Sign up

Export Citation Format

Share Document