scholarly journals The Role of Staphylococcus aureus YycFG in Gene Regulation, Biofilm Organization and Drug Resistance

Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1555
Author(s):  
Shizhou Wu ◽  
Junqi Zhang ◽  
Qi Peng ◽  
Yunjie Liu ◽  
Lei Lei ◽  
...  

Antibiotic resistance is a serious global health concern that may have significant social and financial consequences. Methicillin-resistant Staphylococcus aureus (MRSA) infection is responsible for substantial morbidity and leads to the death of 21.8% of infected patients annually. A lack of novel antibiotics has prompted the exploration of therapies targeting bacterial virulence mechanisms. The two-component signal transduction system (TCS) enables microbial cells to regulate gene expression and the subsequent metabolic processes that occur due to environmental changes. The YycFG TCS in S. aureus is essential for bacterial viability, the regulation of cell membrane metabolism, cell wall synthesis and biofilm formation. However, the role of YycFG-associated biofilm organization in S. aureus antimicrobial drug resistance and gene regulation has not been discussed in detail. We reviewed the main molecules involved in YycFG-associated cell wall biosynthesis, biofilm development and polysaccharide intercellular adhesin (PIA) accumulation. Two YycFG-associated regulatory mechanisms, accessory gene regulator (agr) and staphylococcal accessory regulator (SarA), were also discussed. We highlighted the importance of biofilm formation in the development of antimicrobial drug resistance in S. aureus infections. Data revealed that inhibition of the YycFG pathway reduced PIA production, biofilm formation and bacterial pathogenicity, which provides a potential target for the management of MRSA-induced infections.

Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1922
Author(s):  
Cristina Cattò ◽  
Federica Villa ◽  
Francesca Cappitelli

Increasing numbers of researches have suggested that some drugs with reactive oxygen species (ROS)-mediated mechanisms of action modulate biofilm formation of some pathogenic strains. However, the full contribution of ROS to biofilm development is still an open question. In this paper, the correlations between the antioxidant drug Erdosteine (Er) and its active Metabolite I (Met I), ROS and biofilm development of two strains of methicillin resistant Staphylococcus aureus are presented. Experiments revealed that Er and Met I at 2 and 5 mg/L increased up to three orders of magnitude the number of biofilm-dwelling cells, while the content of ROS within the biofilms was reduced above the 87%, with a major effect of Met I in comparison to Er. Comparative proteomics showed that, 5 mg/L Met I modified the expression of 30% and 65% of total proteins in the two strains respectively. Some proteins involved in cell replication were upregulated, and a nitric oxide-based mechanism is assumed to modulate the biofilm development by changing quorum sensitive pathways. Additionally, several proteins involved in virulence were downregulated in the presence of Met I, suggesting that treated cells, despite being greater in number, might have lost part of their virulence.


2021 ◽  
Author(s):  
◽  
Phillip Butterick

Antimicrobial resistance is a global health concern, with once treatable infections becoming resistant to current standard of care antimicrobials. The search for new antimicrobials has led Neem Biotech Ltd. to manufacture NX-AS-401 an ajoene containing compound derived from Allium sativuum, commonly known as garlic. The research contained within this thesis aimed to identify the effects of NX-AS-401 on Methicillin Resistant Staphylococcus aureus (MRSA), one of the most well documented and commonly isolated antimicrobial resistant bacterial pathogens. A multi-stage approach was utilised, identifying how NX-AS-401 affects planktonic growth, biofilm development and virulence factor production. In Chapters 3 and 4 initial comparison between different NX-AS-401 formulations was performed in determined that ajoene content did not alter the antimicrobial effect of NX-AS-401. EUCAST broth microdilution compared NX-AS-401 to current standard of care antibiotic and determined effective inhibitory and bactericidal concentrations as 128 µg/ml and 2048 µg/ml respectively. When NX-AS-401 was used in combination with various antibiotic classes a synergistic effect was identified and the inhibitory concentrations of both agents were reduced. The primary focus on Chapter 5 was how NX-AS-401 affected S. aureus biofilm formation. NX-AS-401 concentrations of 32 µg/ml inhibited biofilm formation and a concentration of 512 µg/ml caused disruption of pre-established biofilms. These effects were confirmed using scanning electron microscopy and confocal microscopy with live/dead staining. In gene expression studies it was determined that the effects of NX-AS-401 on S. aureus biofilms were strain dependent and a target gene was not identified. Chapter 6 demonstrated that NX-AS-401 did not alter the production of Staphylococcus aureus exo-enzyme production in vitro during phenotypic studies. In Galleria mellonella low NX-AS-401 concentrations assisted in the recovery from S. aureus in a strain dependent manner, however, high concentrations caused increased Galleria mellonella fatality. NX-AS-401 altered the ability of S. aureus cells to invade human epithelial cells but did not prevent adhesion of S. aureus to the cells. NX-AS-401 has multiple effects on S. aureus with the ability to affect both planktonic cells and biofilm structure showing promise as an antimicrobial. Its main effects are growth inhibition and biofilm disruption rather than causing bacterial cell death. These attributes and the synergistic effects between NX-AS-401 and multiple antibiotic classes, indicate NX-AS-401 has potential as a strong antimicrobial adjuvant.


2016 ◽  
Vol 21 (1) ◽  
pp. 23-36 ◽  
Author(s):  
Clarissa Willers ◽  
Johannes Frederik Wentzel ◽  
Lissinda Hester du Plessis ◽  
Chrisna Gouws ◽  
Josias Hendrik Hamman

Microbiology ◽  
2014 ◽  
Vol 160 (8) ◽  
pp. 1737-1748 ◽  
Author(s):  
Ronan K. Carroll ◽  
Frances E. Rivera ◽  
Courtney K. Cavaco ◽  
Grant M. Johnson ◽  
David Martin ◽  
...  

Staphylococcus aureus is a versatile pathogen of humans and a continued public health concern due to the rise and spread of multidrug-resistant strains. As part of an ongoing investigation into the pathogenic mechanisms of this organism we previously demonstrated that an intracellular N-terminal processing protease is required for S. aureus virulence. Following on from this, here we examine the role of CtpA, the lone C-terminal processing protease of S. aureus. CtpA, a member of the S41 family, is a serine protease whose homologues in Gram-negative bacteria have been implicated in a range of biological functions, including pathogenesis. We demonstrate that S. aureus CtpA is localized to the bacterial cell wall and expression of the ctpA gene is maximal upon exposure to conditions encountered during infection. Disruption of the ctpA gene leads to decreased heat tolerance and increased sensitivity when exposed to components of the host immune system. Finally we demonstrate that the ctpA − mutant strain is attenuated for virulence in a murine model of infection. Our results represent the first characterization of a C-terminal processing protease in a pathogenic Gram-positive bacterium and show that it plays a critical role during infection.


2019 ◽  
Vol 201 (11) ◽  
Author(s):  
Jaione Valle ◽  
Maite Echeverz ◽  
Iñigo Lasa

ABSTRACTStaphylococcus aureusclinical strains are able to produce at least two distinct types of biofilm matrixes: biofilm matrixes made of the polysaccharide intercellular adhesin (PIA) or poly-N-acetylglucosamine (PNAG), whose synthesis is mediated by theicaADBClocus, and biofilm matrixes built of proteins (polysaccharide independent). σBis a conserved alternative sigma factor that regulates the expression of more than 100 genes in response to changes in environmental conditions. While numerous studies agree that σBis required for polysaccharide-independent biofilms, controversy persists over the role of σBin the regulation of PIA/PNAG-dependent biofilm development. Here, we show that genetically unrelatedS. aureusσB-deficient strains produced stronger biofilms under both static and flow conditions and accumulated higher levels of PIA/PNAG exopolysaccharide than their corresponding wild-type strains. The increased accumulation of PIA/PNAG in the σBmutants correlated with a greater accumulation of the IcaC protein showed that it was not due to adjustments inicaADBCoperon transcription and/oricaADBCmRNA stability. Overall, our results reveal that in the presence of active σB, the turnover of Ica proteins is accelerated, reducing the synthesis of PIA/PNAG exopolysaccharide and consequently the PIA/PNAG-dependent biofilm formation capacity.IMPORTANCEDue to its multifaceted lifestyle,Staphylococcus aureusneeds a complex regulatory network to connect environmental signals with cellular physiology. One particular transcription factor, named σB(SigB), is involved in the general stress response and the expression of virulence factors. For many years, great confusion has existed about the role of σBin the regulation of the biofilm lifestyle inS. aureus. Our study demonstrated that σBis not necessary for exopolysaccharide-dependent biofilms and, even more, thatS. aureusproduces stronger biofilms in the absence of σB. The increased accumulation of exopolysaccharide correlates with higher stability of the proteins responsible for its synthesis. The present findings reveal an additional regulatory layer to control biofilm exopolysaccharide synthesis under stress conditions.


2021 ◽  
Vol 7 ◽  
Author(s):  
James Wabwire Oguttu ◽  
Daniel Nenene Qekwana ◽  
Agricola Odoi

Background: While surveillance of antimicrobial drug resistance is ongoing in human medicine in South Africa, there is no such activity being performed in veterinary medicine. As a result, there is a need to investigate antimicrobial resistance among enterococci isolated from dogs in South Africa to improve understanding of the status of antimicrobial drug resistance given its public and veterinary public health importance. This study investigated antimicrobial resistance and factors associated with resistance profiles of enterococci isolated from dogs presented for veterinary care at a veterinary teaching hospital in South Africa.Methods: In total 102 Enterococcus isolated between 2007 and 2011 by a bacteriology laboratory at a teaching hospital were included in this study. Antimicrobial susceptibility of the isolates was determined against a panel of 18 antimicrobials using the Kirby Bauer disc diffusion technique. Univariate analysis was used to assess simple associations between year, season, breed group, age group, sex, and specimen as covariates and extensive drug resistance (XDR) as the outcome. Variables that were significant in the univariate analysis at a generous p-value ≤ 0.2 were included in the multivariable logistic models to investigate predictors of XDR.Results: All the Enterococcus isolates were resistant to at least one antimicrobial. High proportions of isolates were resistant against lincomycin (93%), kanamycin (87%), orbifloxacin (85%), and aminogycoside-lincosamide (77%). Ninety three percent (93%), 35.3, and 8.8% of the isolates exhibited multi-drug, extensive-drug and pan-drug resistance, respectively. Only year was significantly (p = 0.019) associated with extensive-drug resistance.Conclusion: Given the zoonotic potential of Enterococcus spp., the high antimicrobial resistance and multi-drug resistance observed in this study are a public health concern from one health perspective. The identified resistance to various antimicrobials may be useful in guiding clinicians especially in resource scarce settings where it is not always possible to perform AST when making treatment decisions.


Sign in / Sign up

Export Citation Format

Share Document