scholarly journals Iron Chelation in Murine Models of Systemic Inflammation Induced by Gram-Positive and Gram-Negative Toxins

Antibiotics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 283 ◽  
Author(s):  
Danielle Fokam ◽  
Kayle Dickson ◽  
Kiyana Kamali ◽  
Bruce Holbein ◽  
Patricia Colp ◽  
...  

Iron is an essential element for various physiological processes, but its levels must remain tightly regulated to avoid cellular damage. Similarly, iron plays a dual role in systemic inflammation, such as with sepsis. Leukocytes utilize iron to produce reactive oxygen species (ROS) to kill bacteria, but pathologically increased iron-catalyzed ROS production in sepsis can lead to damage of host cells, multi-organ failure and death. Temporary reduction in bioavailable iron represents a potential therapeutic target in sepsis. This study investigates the effect of the novel iron chelator, DIBI, in murine models of systemic (hyper-)inflammation: C57BL/6 mice were challenged with toxins from Gram-positive (Staphylococcus aureus: lipoteichoic acid, peptidoglycan) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae: lipopolysaccharide). Intravital microscopy (IVM) was performed to assess immune cell activation and its impact on microvascular blood flow in vivo in the microcirculation of the gut. Plasma inflammatory mediators were measured via multiplex assay, and morphologic change in intestinal tissue was evaluated. DIBI treatment decreased leukocyte (hyper-)activation induced by Gram-positive and Gram-negative toxins. In some cases, it preserved capillary perfusion, reduced plasma inflammatory markers and attenuated tissue damage. These findings support the utility of DIBI as a novel treatment for systemic inflammation, e.g., sepsis.

mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Dean A. Rowe-Magnus ◽  
Adenine Y. Kao ◽  
Antonio Cembellin Prieto ◽  
Meng Pu ◽  
Cheng Kao

ABSTRACT All metazoans produce antimicrobial peptides (AMPs) that have both broad antimicrobial and immunomodulatory activity. Cathelicidins are AMPs that preferentially kill Gram-negative bacteria in vitro, purportedly by assembling into higher-order structures that perforate the membrane. We utilized high-resolution, single-cell fluorescence microscopy to examine their mechanism of action in real time. Engineered cathelicidins rapidly bound to Gram-negative and Gram-positive cells and penetrated the cytoplasmic membrane. Rapid failure of the peptidoglycan superstructure in regions of active turnover caused leakage of cytoplasmic contents and the formation of membrane-bound blebs. A mutation anticipated to destabilize interactions between cathelicidin subunits had no effect on bactericidal activity, suggesting that cathelicidins have activities beyond perforating the membrane. Nanomolar concentrations of cathelicidins, although not bactericidal, reduced the growth rate of Gram-negative and Gram-positive bacteria. The cells exhibited expression changes in multiple essential processes, including protein synthesis, peptidoglycan biosynthesis, respiration, and the detoxification of reactive oxygen species (ROS). Time-lapse imaging revealed that ROS accumulation preceded bleb formation, and treatments that reduced cellular ROS levels overcame these bactericidal effects. We propose that that the primary effect of cathelicidins is to induce the production of ROS that damage bacterial molecules, leading to slowed growth or cell death. Given their low circulating levels in vivo, AMPs may serve to slow bacterial population expansion so that cellular immunity systems can respond to and battle the infection. IMPORTANCE Antimicrobial peptides (AMPs) are an important part of the mammalian innate immune system in the battle against microbial infection. How AMPs function to control bacteria is not clear, as nearly all activity studies use nonphysiological levels of AMPs. We monitored peptide action in live bacterial cells over short time frames with single-cell resolution and found that the primary effect of cathelicidin peptides is to increase the production of oxidative molecules that cause cellular damage in Gram-positive and Gram-negative bacteria.


2020 ◽  
Vol 117 (15) ◽  
pp. 8437-8448 ◽  
Author(s):  
Charles G. Starr ◽  
Jenisha Ghimire ◽  
Shantanu Guha ◽  
Joseph P. Hoffmann ◽  
Yihui Wang ◽  
...  

Novel classes of antibiotics and new strategies to prevent and treat infections are urgently needed because the rapid rise in drug-resistant bacterial infections in recent decades has been accompanied by a parallel decline in development of new antibiotics. Membrane permeabilizing antimicrobial peptides (AMPs) have long been considered a potentially promising, novel class of antibiotic, especially for wound protection and treatment to prevent the development of serious infections. Yet, despite thousands of known examples, AMPs have only infrequently proceeded as far as clinical trials, especially the chemically simple, linear examples. In part, this is due to impediments that often limit their applications in vivo. These can include low solubility, residual toxicity, susceptibility to proteolysis, and loss of activity due to host cell, tissue, and protein binding. Here we show how synthetic molecular evolution can be used to evolve potentially advantageous antimicrobial peptides that lack these impediments from parent peptides that have at least some of them. As an example of how the antibiotic discovery pipeline can be populated with more promising candidates, we evolved and optimized one family of linear AMPs into a new generation with high solubility, low cytotoxicity, potent broad-spectrum sterilizing activity against a panel of gram-positive and gram-negative ESKAPE pathogens, and antibiofilm activity against gram-positive and gram-negative biofilms. The evolved peptides have these activities in vitro even in the presence of concentrated host cells and also in vivo in the complex, cell- and protein-rich environment of a purulent animal wound model infected with drug-resistant bacteria.


2018 ◽  
Vol 19 (11) ◽  
pp. 3588 ◽  
Author(s):  
Mykolas Bendorius ◽  
Chrystelle Po ◽  
Sylviane Muller ◽  
Hélène Jeltsch-David

It took decades to arrive at the general consensus dismissing the notion that the immune system is independent of the central nervous system. In the case of uncontrolled systemic inflammation, the relationship between the two systems is thrown off balance and results in cognitive and emotional impairment. It is specifically true for autoimmune pathologies where the central nervous system is affected as a result of systemic inflammation. Along with boosting circulating cytokine levels, systemic inflammation can lead to aberrant brain-resident immune cell activation, leakage of the blood–brain barrier, and the production of circulating antibodies that cross-react with brain antigens. One of the most disabling autoimmune pathologies known to have an effect on the central nervous system secondary to the systemic disease is systemic lupus erythematosus. Its neuropsychiatric expression has been extensively studied in lupus-like disease murine models that develop an autoimmunity-associated behavioral syndrome. These models are very useful for studying how the peripheral immune system and systemic inflammation can influence brain functions. In this review, we summarize the experimental data reported on murine models developing autoimmune diseases and systemic inflammation, and we explore the underlying mechanisms explaining how systemic inflammation can result in behavioral deficits, with a special focus on in vivo neuroimaging techniques.


2021 ◽  
Vol 22 (3) ◽  
pp. 1005
Author(s):  
Ella L. Johnston ◽  
Begoña Heras ◽  
Thomas A. Kufer ◽  
Maria Kaparakis-Liaskos

Bacterial membrane vesicles (BMVs) are nanoparticles produced by both Gram-negative and Gram-positive bacteria that can function to modulate immunity in the host. Both outer membrane vesicles (OMVs) and membrane vesicles (MVs), which are released by Gram-negative and Gram-positive bacteria, respectively, contain cargo derived from their parent bacterium, including immune stimulating molecules such as proteins, lipids and nucleic acids. Of these, peptidoglycan (PG) and lipopolysaccharide (LPS) are able to activate host innate immune pattern recognition receptors (PRRs), known as NOD-like receptors (NLRs), such as nucleotide-binding oligomerisation domain-containing protein (NOD) 1, NOD2 and NLRP3. NLR activation is a key driver of inflammation in the host, and BMVs derived from both pathogenic and commensal bacteria have been shown to package PG and LPS in order to modulate the host immune response using NLR-dependent mechanisms. Here, we discuss the packaging of immunostimulatory cargo within OMVs and MVs, their detection by NLRs and the cytokines produced by host cells in response to their detection. Additionally, commensal derived BMVs are thought to shape immunity and contribute to homeostasis in the gut, therefore we also highlight the interactions of commensal derived BMVs with NLRs and their roles in limiting inflammatory diseases.


Author(s):  
B.K. Ghosh

Periplasm of bacteria is the space outside the permeability barrier of plasma membrane but enclosed by the cell wall. The contents of this special milieu exterior could be regulated by the plasma membrane from the internal, and by the cell wall from the external environment of the cell. Unlike the gram-negative organism, the presence of this space in gram-positive bacteria is still controversial because it cannot be clearly demonstrated. We have shown the importance of some periplasmic bodies in the secretion of penicillinase from Bacillus licheniformis.In negatively stained specimens prepared by a modified technique (Figs. 1 and 2), periplasmic space (PS) contained two kinds of structures: (i) fibrils (F, 100 Å) running perpendicular to the cell wall from the protoplast and (ii) an array of vesicles of various sizes (V), which seem to have evaginated from the protoplast.


Author(s):  
Jacob S. Hanker ◽  
Paul R. Gross ◽  
Beverly L. Giammara

Blood cultures are positive in approximately only 50 per cent of the patients with nongonococcal bacterial infectious arthritis and about 20 per cent of those with gonococcal arthritis. But the concept that gram-negative bacteria could be involved even in chronic arthritis is well-supported. Gram stains are more definitive in staphylococcal arthritis caused by gram-positive bacteria than in bacterial arthritis due to gram-negative bacteria. In the latter situation where gram-negative bacilli are the problem, Gram stains are helpful for 50% of the patients; they are only helpful for 25% of the patients, however, where gram-negative gonococci are the problem. In arthritis due to gram-positive Staphylococci. Gramstained smears are positive for 75% of the patients.


Author(s):  
Sushma Vashisht ◽  
Manish Pal Singh ◽  
Viney Chawla

The methanolic extract of the resin of Shorea robusta was subjected to investigate its antioxidant and antibacterial properties its utility in free radical mediated diseases including diabetic, cardiovascular, cancer etc. The methanol extract of the resin was tested for antioxidant activity using scavenging activity of DPPH (1,1-diphenyl-2-picrylhydrazil) radical method, reducing power by FeCl3 and antibacterial activity against gram positive and gram negative bacteria using disc diffusion method. The phytochemical screening considered the presence of triterpenoids, tannins and flavoniods. Overall, the plant extract is a source of natural antioxidants which might be helpful in preventing the progress of various oxidative stress mediated diseases including aging. The half inhibition concentration (IC50) of resin extract of Shorea robusta and ascorbic acid were 35.60 µg/ml and 31.91 µg/ml respectively. The resin extract exhibit a significant dose dependent inhibition of DPPH activity. Antibacterial activity was observed against gram positive and gram negative bacteria in dose dependent manner.Key Words: Shorea robusta, antioxidant, antibacterial, Disc-diffusion, DPPH.


Author(s):  
Elaf Ayad Kadhem ◽  
Miaad Hamzah Zghair ◽  
Sarah , Hussam H. Tizkam, Shoeb Alahmad Salih Mahdi ◽  
Hussam H. Tizkam ◽  
Shoeb Alahmad

magnesium oxide nanoparticles (MgO NPs) were prepared by simple wet chemical method using different calcination temperatures. The prepared NPs were characterized by Electrostatic Discharge (ESD), Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). It demonstrates sharp intensive peak with the increase of crystallinty and increase of the size with varying morphologies with respect to increase of calcination temperature. Antibacterial studies were done on gram negative bacteria (E.coli) and gram positive bacteria (S.aureus) by agar disc diffusion method. The zones of inhibitions were found larger for gram positive bacteria than gram negative bacteria, this mean, antibacterial MgO NPs activity more active on gram positive bacteria than gram negative bacteria because of the structural differences. It was found that antibacterial activity of MgO NPs was found it has directly proportional with their concentration.


2020 ◽  
Author(s):  
Nusrat Abedin ◽  
Abdullah Hamed A Alshehri ◽  
Ali M A Almughrbi ◽  
Olivia Moore ◽  
Sheikh Alyza ◽  
...  

Antimicrobial resistance (AMR) has become one of the more serious threats to the global health. The emergence of bacteria resistant to antimicrobial substances decreases the potencies of current antibiotics. Consequently, there is an urgent and growing need for the developing of new classes of antibiotics. Three prepared novel iron complexes have a broad-spectrum antimicrobial activity with minimum bactericidal concentration (MBC) values ranging from 3.5 to 10 mM and 3.5 to 40 mM against Gram-positive and Gram-negative bacteria with antimicrobial resistance phenotype, respectively. Time-kill studies and quantification of the extracellular DNA confirmed the bacteriolytic mode of action of the iron-halide compounds. Additionally, the novel complexes showed significant antibiofilm activity against the tested pathogenic bacterial strains at concentrations lower than the MBC. The cytotoxic effect of the complexes on different mammalian cell lines show sub-cytotoxic values at concentrations lower than the minimum bactericidal concentrations.


Sign in / Sign up

Export Citation Format

Share Document