scholarly journals New Synthetic Nitro-Pyrrolomycins as Promising Antibacterial and Anticancer Agents

Antibiotics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 292 ◽  
Author(s):  
Maria Valeria Raimondi ◽  
Alessandro Presentato ◽  
Giovanna Li Petri ◽  
Miriam Buttacavoli ◽  
Agnese Ribaudo ◽  
...  

Pyrrolomycins (PMs) are polyhalogenated antibiotics known as powerful biologically active compounds, yet featuring high cytotoxicity. The present study reports the antibacterial and antitumoral properties of new chemically synthesized PMs, where the three positions of the pyrrolic nucleus were replaced by nitro groups, aiming to reduce their cytotoxicity while maintaining or even enhancing the biological activity. Indeed, the presence of the nitro substituent in diverse positions of the pyrrole determined an improvement of the minimal bactericidal concentration (MBC) against Gram-positive (i.e., Staphylococcus aureus) or -negative (i.e., Pseudomonas aeruginosa) pathogen strains as compared to the natural PM-C. Moreover, some new nitro-PMs were as active as or more than PM-C in inhibiting the proliferation of colon (HCT116) and breast (MCF 7) cancer cell lines and were less toxic towards normal epithelial (hTERT RPE-1) cells. Altogether, our findings contribute to increase the knowledge of the mode of action of these promising molecules and provide a basis for their rationale chemical or biological manipulation.

2019 ◽  
Vol 70 (10) ◽  
pp. 3603-3610
Author(s):  
Madalina Mihalache ◽  
Cornelia Guran ◽  
Aurelia Meghea ◽  
Vasile Bercu ◽  
Ludmila Motelica ◽  
...  

The three copper complexes having a-ketoglutaric acid (H2A) and 1- (o-tolyl) biguanide (TB) ligands have been synthesized and characterized. The proposed formulas for these complexes are: [Cu(TB)(HA)]Cl (C1), [Cu(TB)(HA)CH3COO]�H2O (C2) and [Cu(TB)(HA)](NO3) (C3) where HA represents deprotonated H2A. The complexes obtained were tested for antibacterial activity against Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 27853, antifungal activity on Candida albicans ATCC 10231 and antitumor activity on HeLa tumor cells. Due to the antitumor, antifungal, antimicrobial activity and inhibition of inert substrate adhesion, complexes synthesized could be used for potential therapeutic applications.


Mediscope ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 67-74 ◽  
Author(s):  
Syed Didarul Haque ◽  
Abu Md Mayeenuddin Al Amin ◽  
Baishakhi Islam ◽  
Nazia Nazneen ◽  
Syeda Noorjahan Karim ◽  
...  

An exploratory study based on laboratory experiment was carried out to determine the antibacterial effect of Dimethyl sulfoxide (DMSO) extract of Aloe vera leaf gel (DAE) against standard strains of Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae in the Department of Pharmacology & Therapeutics in collaboration with the Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh. DMSO extract was used in five different concentrations (100, 200, 300, 400 and 500 μg/ml). Dose dependent inhibitory effect was seen against the test organisms using disc diffusion method. Zone of inhibition (ZOI) were 8 mm, 13 mm, 15 mm, 16 mm and 21 mm against S. aureus; 0 mm, 8 mm, 13 mm, 15 mm and 18 mm against P. aeruginosa; 8 mm, 11 mm, 13 mm, 16 mm and 20 mm against E. coli; 0 mm, 9 mm, 12 mm, 14 mm and 18 mm against K. pneumoniae at 100, 200, 300, 400 and 500 μg/ml respectively. The minimum inhibitory concentration (MIC) was assessed by broth dilution technique. The MICs of DAE for S. aureus, P. aeruginosa, E. coli and K. pneumoniae were 300 μg/ml, 400 μg/ml, 400 μg/ml and 450 μg/ml respectively. From the study it was observed that DMSO extract of Aloe vera leaf gel possesses antibacterial effect against the test pathogens. The findings highlight the need for further extensive study to detect and isolate the biologically active ingredients present in the Aloe vera leaves which are responsible for antibacterial effect. Hopefully, that would lead to the discovery of new and more potent antimicrobial agents originated from Aloe vera. Mediscope Vol. 7, No. 2: July 2020, Page 67-74


PLoS ONE ◽  
2016 ◽  
Vol 11 (5) ◽  
pp. e0155139 ◽  
Author(s):  
Evelien Gerits ◽  
Eline Blommaert ◽  
Anna Lippell ◽  
Alex J. O’Neill ◽  
Bram Weytjens ◽  
...  

1998 ◽  
Vol 5 (5) ◽  
pp. 267-274 ◽  
Author(s):  
Zahid H. Chohan ◽  
Marapaka Praveen ◽  
Syed K. A. Sherazi

Biologically active complexes of Co(II), Ni(II), Cu(II) and Zn(II) with novel ONO, NNO and SNO donor pyrazinoylhydrazine-derived compounds have been prepared and characterized on the basis of analytical data and various physicochemical studies. Distorted octahedral structures for all the complexes have been proposed. The synthesized ligands and their complexes have been screened for their antibacterial activity against bacterial species Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumonae. The activity data show the metal complexes to be more active than the parent free ligands against one or more bacterial species.


2020 ◽  
Vol 71 (4) ◽  
pp. 336-346
Author(s):  
Mirela Calinescu ◽  
Ovidiu Oprea ◽  
Catalina Stoica ◽  
Mihai Nita-Lazar ◽  
Madalina Mihalache

Four coordination compounds of Pd(II), Pt(II) and Pt(IV) with usnic acid (H3AU) and 1-(o-tolyl)biguanide (TB) as ligands have been synthesized in view of their potential as antimicrobial, antifungal and antitumor agents. The metal complexes have been characterized by elemental and thermogravimetrical analyses, infrared and electronic spectra. Based on these studies, the following formulas have been proposed for the complexes: [Pd(TB)(H3AU)]PdCl4 (C1), [Pd(TB)(H2AU)] CH3COO (C2), [Pt(TB)(H2AU)Cl2]Cl (C3) and [Pt(TB)(H2AU)]Cl (C4), where H2AU is deprotonated usnic acid. The in vitro biological activities of the new complexes were tested against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 10231 and HeLa tumor cells. All complexes were found to have good biological properties and therefore they can be further explored in therapeutic applications.


2009 ◽  
Vol 6 (3) ◽  
pp. 743-746 ◽  
Author(s):  
T. Arunachalam ◽  
R. Bhakyaraj ◽  
A. K. Sasi

Metal complex of Mn(II), Co(II), Ni(II) and Cu(II) with benzoic acid have been prepared and characterized by physiochemical methods. On the basis of electronic spectra and magnetic susceptibility measurement in conjunction with infrared spectra, six coordinated octahedral structure have been proposed to all the complexes. The benzoic acid and their complexes have been tested for their antibacterial activity against the bacteriaE. coli,Bacillus subtilis,Pseudomonas aeruginosaandStaphylococcus aureus. Further, the non electrolytic nature of all the synthesized complexes was identified from conductivity measurements.


2019 ◽  
Vol 15 ◽  
pp. 187-193 ◽  
Author(s):  
Sven Thierbach ◽  
Max Wienhold ◽  
Susanne Fetzner ◽  
Ulrich Hennecke

Selectively methylated analogues of naturally occurring 2-heptyl-4(1H)-quinolones, which are alkaloids common within the Rutaceae family and moreover are associated with quorum sensing and virulence of the human pathogen Pseudomonas aeruginosa, have been prepared. While the synthesis by direct methylation was successful for 3-unsubstituted 2-heptyl-4(1H)-quinolones, methylated derivatives of the Pseudomonas quinolone signal (PQS) were synthesized from 3-iodinated quinolones by methylation and iodine–metal exchange/oxidation. The two N- and O-methylated derivatives of the PQS showed strong quorum sensing activity comparable to that of PQS itself. Staphylococcus aureus, another pathogenic bacterium often co-occurring with P. aeruginosa especially in the lung of cystic fibrosis patients, was inhibited in planktonic growth and cellular respiration by the 4-O-methylated derivatives of HQNO and HHQ, respectively.


Amino Acids ◽  
2021 ◽  
Author(s):  
Katarzyna Guzow ◽  
Ewa Mulkiewicz ◽  
Michał Obuchowski ◽  
Wiesław Wiczk

AbstractSearching for new drugs is still a challenge for science, mainly because of civilization development and globalization which promote the rapid spread of diseases, which is particularly dangerous in the case of infectious ones. Moreover, readily available already known antibiotics are often overused or misused, possibly contributing to the increase in the number of multidrug-resistant microorganisms. A consequence of this is the need for new structures of potential drugs. One of them is a benzoxazole moiety, a basic skeleton of a group of fluorescent heterocyclic compounds already widely used in chemistry, industry, and medicine, which is also present in naturally occurring biologically active compounds. Moreover, synthetic benzoxazoles are also biologically active. Considering all of that, a large group of non-proteinogenic amino acids based on 3-(2-benzoxazol-5-yl)alanine skeleton was studied in search for new antimicrobial and anticancer agents. Screening tests revealed that antibacterial potential of 41 compounds studied is not very high; however, they are selective acting only against Gram-positive bacteria (B. subtilis). Moreover, almost half of the studied compounds have antifungal properties, also against pathogens (C. albicans). Most of studied compounds are toxic to both normal and cancer cells. However, in a few cases, toxicity to normal cells is much lower than for cancer cells indicating these compounds as future anticancer agents. The research carried out on such a large group of compounds allowed to establish a structure–activity relationship which enables to select candidates for further modifications, necessary to improve their biological activity and obtain a new lead structure with potential for therapeutic use.


Author(s):  
I.V. Ivashchenko

<p> Antimicrobial properties of <em>Serratula coronata </em>L<em>., </em>introduced in Zhytomyr Polissya, were studied against test cultures of <em>Escherichia coli</em> (coliform bacillus) UCM B-906 (ATCC 25922), <em>Staphylococcus aureus</em>(golden staphylococcus) UCM B-904 (ATCC 25923), <em>Pseudomonas aeruginosa</em> (blue pus bacillus) UCM B-900 (ATCC9027), <em>Candida albicans</em> UCM Y-(ATCC 885-653).</p><p><em>Serratula coronata </em>L.<em> </em>40 % ethanol extract showed potent antimicrobial effect against gram-positive bacteria <em>Staphylococcus aureus</em>. Compared with the solvent, MIC (minimal inhibitory concentration) and MBC (minimal bactericidal concentration) increased 32 and 8 times, respectively. The other microorganisms’ cultures demonstrated much lower sensitivity. The study revealed less significant effect of the extract against <em>Candida albicans, Pseudomonas aeruginosa, </em>and it failed to display any bactericidal/fungicidal effect against gram-negative strains of <em>Escherichia coli, Pseudomonas aeruginosa </em>and fungus <em>Candida albicans.</em>The data obtained experimentally show that further study of <em>Serratula coronata </em>L<em>. </em>and its application as the basis for new pharmaceutical anti-staphylococcus preparations may be considered promising and having a great potential.</p>


Sign in / Sign up

Export Citation Format

Share Document