scholarly journals Antibiotic Resistance Characteristics of Pseudomonas aeruginosa Isolated from Keratitis in Australia and India

Antibiotics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 600
Author(s):  
Mahjabeen Khan ◽  
Fiona Stapleton ◽  
Stephen Summers ◽  
Scott A. Rice ◽  
Mark D. P. Willcox

This study investigated genomic differences in Australian and Indian Pseudomonas aeruginosa isolates from keratitis (infection of the cornea). Overall, the Indian isolates were resistant to more antibiotics, with some of those isolates being multi-drug resistant. Acquired genes were related to resistance to fluoroquinolones, aminoglycosides, beta-lactams, macrolides, sulphonamides, and tetracycline and were more frequent in Indian (96%) than in Australian (35%) isolates (p = 0.02). Indian isolates had large numbers of gene variations (median 50,006, IQR = 26,967–50,600) compared to Australian isolates (median 26,317, IQR = 25,681–33,780). There were a larger number of mutations in the mutL and uvrD genes associated with the mismatch repair (MMR) system in Indian isolates, which may result in strains losing their efficacy for DNA repair. The number of gene variations were greater in isolates carrying MMR system genes or exoU. In the phylogenetic division, the number of core genes were similar in both groups, but Indian isolates had larger numbers of pan genes (median 6518, IQR = 6040–6935). Clones related to three different sequence types—ST308, ST316, and ST491—were found among Indian isolates. Only one clone, ST233, containing two strains was present in Australian isolates. The most striking differences between Australian and Indian isolates were carriage of exoU (that encodes a cytolytic phospholipase) in Indian isolates and exoS (that encodes for GTPase activator activity) in Australian isolates, large number of acquired resistance genes, greater changes to MMR genes, and a larger pan genome as well as increased overall genetic variation in the Indian isolates.

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 361
Author(s):  
Adela Teban-Man ◽  
Anca Farkas ◽  
Andreea Baricz ◽  
Adriana Hegedus ◽  
Edina Szekeres ◽  
...  

Carbapenemase-producing Klebsiella pneumoniae (CPKP) isolated from influent (I) and effluent (E) of two wastewater treatment plants, with (S1) or without (S2) hospital contribution, were investigated. The strains belonged to the Kp1 phylogroup, their highest frequency being observed in S1, followed by S2. The phenotypic and genotypic hypervirulence tests were negative for all the strains tested. At least one carbapenemase gene (CRG), belonging to the blaKPC, blaOXA-48, blaNDM and blaVIM families, was observed in 63% of CPKP, and more than half co-harboured two to four CRGs, in different combinations. Only five CRG variants were observed, regardless of wastewater type: blaKPC-2, blaNDM-1, blaNDM-6, blaVIM-2, and blaOXA-48. Sequence types ST258, ST101 and ST744 were common for both S1 and S2, while ST147, ST525 and ST2502 were found only in S1 and ST418 only in S2. The strains tested were multi-drug resistant (MDR), all being resistant to beta-lactams, cephalosporins, carbapenems, monobactams and fluoroquinolones, followed by various resistance profiles to aminoglycosides, trimethoprim-sulphamethoxazole, tigecycline, chloramphenicol and tetracycline. After principal component analysis, the isolates in S1 and S2 groups did not cluster independently, confirming that the antibiotic susceptibility patterns and gene-type profiles were both similar in the K. pneumoniae investigated, regardless of hospital contribution to the wastewater type.


2019 ◽  
Vol 42 (3) ◽  
pp. 78-83
Author(s):  
Mochonyi V. A. ◽  
Savchenko O. A. ◽  
Podsevakhina S. L. ◽  
Tkachenko O. V.

Pseudomonas infection is one of the most problematic pathogens of pneumonia, because it has natural resistance to many antibiotics, is able to quickly form acquired resistance, often causes severe pneumonia with a poor prognosis. Analysis of the literature data showed that today P. Aeruginosa demonstrates resistance to all anti-pest control antibiotics, with the exception of polymyxin. The levels of resistance of P.Aeruginosa are very considerably depending on the region of the survey and the profile of the hospital, which requires monitoring the sensitivity of microorganisms in each department of the hospital. The data on the degree of resistance to P. Aeruginosa antibiotics in Ukraine are limited, but available local studies on this issue also show a high level of resistance of this microorganism to the main anti-pest antibiotics. In patients with pneumonia and risk factors for the involvement of Pseudomonas infection, most authors recommend combination antibiotic therapy, which has a synergistic effect on P. Aeruginosa, which allows, in most cases, to overcome the resistance of this microorganism. According to the literature, such synergism has been proven for the combination: beta-lactams (ceftazidime, cefepime, antipseudomonas carbapenems) + aminoglycosides (amikacin) or fluoroquinolones (ciprofloxacin or levofloxacin). The use of these drugs in the maximum allowable dose allows a higher degree of probability to achieve the eradication of P. Aeruginosa in patients with pneumonia and to improve the prognosis for this disease. Keywords: pneumonia, Pseudomonas Aeruginosa, resistance, treatment.


2021 ◽  
Vol 22 (19) ◽  
pp. 10820
Author(s):  
Karolina Anna Mielko ◽  
Sławomir Jan Jabłoński ◽  
Łukasz Pruss ◽  
Justyna Milczewska ◽  
Dorota Sands ◽  
...  

Pseudomonas aeruginosa is a common human pathogen belonging to the ESKAPE group. The multidrug resistance of bacteria is a considerable problem in treating patients and may lead to increased morbidity and mortality rate. The natural resistance in these organisms is caused by the production of specific enzymes and biofilm formation, while acquired resistance is multifactorial. Precise recognition of potential antibiotic resistance on different molecular levels is essential. Metabolomics tools may aid in the observation of the flux of low molecular weight compounds in biochemical pathways yielding additional information about drug-resistant bacteria. In this study, the metabolisms of two P. aeruginosa strains were compared—antibiotic susceptible vs. resistant. Analysis was performed on both intra- and extracellular metabolites. The 1H NMR method was used together with multivariate and univariate data analysis, additionally analysis of the metabolic pathways with the FELLA package was performed. The results revealed the differences in P. aeruginosa metabolism of drug-resistant and drug-susceptible strains and provided direct molecular information about P. aeruginosa response for different types of antibiotics. The most significant differences were found in the turnover of amino acids. This study can be a valuable source of information to complement research on drug resistance in P. aeruginosa.


2013 ◽  
Vol 57 (11) ◽  
pp. 5697-5700 ◽  
Author(s):  
Jingshu Ji ◽  
Jie Wang ◽  
Zhihui Zhou ◽  
Haiping Wang ◽  
Yan Jiang ◽  
...  

ABSTRACTIt is unclear whether the genetic background of drug-resistantPseudomonas aeruginosawas disseminated from a certain clone. Thus, we performed MLST (multilocus sequence typing) of 896P. aeruginosaisolates that were nonsusceptible to imipenem, meropenem, or ceftazidime. This revealed 254 sequence types (STs), including 104 new STs and 34 STs with novel alleles. Thirty-three clonal complexes and 404 singletons were found. In conclusion, drug-resistantP. aeruginosaclones can be developed from diverse genetic backgrounds.


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 889
Author(s):  
João Botelho ◽  
Filipa Grosso ◽  
Luísa Peixe

The ciprofloxacin-modifying crpP gene was recently identified in a plasmid isolated from a Pseudomonas aeruginosa clinical isolate. Homologues of this gene were also identified in Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii. We set out to explore the mobile elements involved in the acquisition and spread of this gene in publicly available and complete genomes of Pseudomonas spp. All Pseudomonas complete genomes were downloaded from NCBI’s Refseq library and were inspected for the presence of the crpP gene. The mobile elements carrying this gene were further characterized. The crpP gene was identified only in P. aeruginosa, in more than half of the complete chromosomes (61.9%, n = 133/215) belonging to 52 sequence types, of which the high-risk clone ST111 was the most frequent. We identified 136 crpP-harboring integrative and conjugative elements (ICEs), with 93.4% belonging to the mating-pair formation G (MPFG) family. The ICEs were integrated at the end of a tRNALys gene and were all flanked by highly conserved 45-bp direct repeats. The crpP-carrying ICEs contain 26 core genes (2.2% of all 1193 genes found in all the ICEs together), which are present in 99% or more of the crpP-harboring ICEs. The most frequently encoded traits on these ICEs include replication, transcription, intracellular trafficking and cell motility. Our work suggests that ICEs are the main vectors promoting the dissemination of the ciprofloxacin-modifying crpP gene in P. aeruginosa.


2019 ◽  
Vol 74 (Supplement_4) ◽  
pp. iv32-iv38 ◽  
Author(s):  
Melissa G McCracken ◽  
Heather J Adam ◽  
Joseph M Blondeau ◽  
Andrew J Walkty ◽  
James A Karlowsky ◽  
...  

Abstract Objectives Carbapenem-resistant Pseudomonas aeruginosa are emerging worldwide with increasing reports of carbapenemase-producing isolates. Carbapenem-resistant isolates may also be XDR. This study characterized carbapenem-resistant and XDR P. aeruginosa isolated from patients receiving care at Canadian hospitals from 2007 to 2016. Methods Antimicrobial susceptibility testing was performed using CLSI broth microdilution methods. PCR was used to detect carbapenemases (GES, KPC, NDM, IMP, VIM, OXA-48) and other resistance markers; specific carbapenemase gene variants were identified by DNA sequencing. Genetic relatedness was assessed by MLST and PFGE. Results From 2007 to 2016, 3864 isolates of P. aeruginosa were collected; 466 (12.1%) isolates were carbapenem resistant. The prevalence of carbapenem-resistant P. aeruginosa reached a peak of 17.3% in 2014. Colistin (94% susceptible) and ceftolozane/tazobactam (92.5%) were the most active agents against carbapenem-resistant P. aeruginosa. XDR P. aeruginosa comprised 4.5% of isolates; they were found to be genetically diverse and remained susceptible to colistin and ceftolozane/tazobactam. Only 4.3% (n = 20) of carbapenem-resistant P. aeruginosa harboured a carbapenemase; most were blaGES-5 (35%, n = 7). Wide genetic diversity was observed among carbapenem-resistant P. aeruginosa with >200 different sequence types identified. Conclusions Although the prevalence of carbapenem-resistant P. aeruginosa in Canada spiked in 2014 and 2015, carbapenemase-producing P. aeruginosa remain rare with only 20 (4.3%) isolates identified over a 10 year period. Broad genetic diversity was observed among both carbapenem-resistant and XDR phenotypes of P. aeruginosa. Pan-drug-resistant P. aeruginosa have not yet been identified in Canada.


2020 ◽  
Author(s):  
Jeremiah Chilam ◽  
Silvia Argimón ◽  
Marilyn T. Limas ◽  
Melissa L. Masim ◽  
June M. Gayeta ◽  
...  

AbstractPseudomonas aeruginosa is an opportunistic pathogen often causing nosocomial infections that are resilient to treatment due to an extensive repertoire of intrinsic and acquired resistance mechanisms. In recent years, increasing resistance rates to antibiotics such as carbapenems and extended-spectrum cephalosporins have been reported, as well as multi-drug resistant and possible extremely drug-resistant rates of approximately 21% and 15%, respectively. However, the molecular epidemiology and AMR mechanisms of this pathogen remains largely uncharacterized.We sequenced the whole genomes of 176 P. aeruginosa isolates collected in 2013-2014 by the Antimicrobial Resistance Surveillance Program. The multi-locus sequence type, presence of antimicrobial resistance (AMR) determinants, and relatedness between the isolates were derived from the sequence data. The concordance between phenotypic and genotypic resistance was also determined.Carbapenem resistance was associated namely with loss-of function of the OprD porin, and acquisition of the metallo-β-lactamase VIM. The concordance between phenotypic and genotypic resistance was 93.27% overall for 6 antibiotics in 3 classes, but varied widely between aminoglycosides. The population of P. aeruginosa in the Philippines was diverse, with clonal expansions of XDR genomes belonging to multi-locus sequence types ST235, ST244, ST309, and ST773. We found evidence of persistence or reintroduction of the predominant clone ST235 in one hospital, as well as transfer between hospitals. Most of the ST235 genomes formed a distinct Philippine lineage when contextualized with international genomes, thus raising the possibility that this is a lineage unique to the Philippines. This was further supported by long-read sequencing of one representative XDR isolate, which revealed the presence of an integron carrying multiple resistance genes, including blaVIM-2, with differences in gene composition and synteny to other P. aeruginosa class 1 integrons described before.We produced the first comprehensive genomic survey of P. aeruginosa in the Philippines, which bridges the gap in genomic data from the Western Pacific region and will constitute the genetic background to contextualize ongoing prospective surveillance. Our results also highlight the importance of infection control interventions aimed to curtail the spread of international epidemic clone ST235 within the country.


2020 ◽  
Vol 23 (16) ◽  
Author(s):  
Zina Hashem Shehab ◽  
Shatha Thanoon Ahmed ◽  
Noor Majed Abdallah

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S794-S795
Author(s):  
Mary Francine P Chua ◽  
Syeda Sara Nida ◽  
Jerry Lawhorn ◽  
Janak Koirala

Abstract Background Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Pseudomonas aeruginosa (PA) have limited therapeutic options for treatment. Ceftolozane/tazobactam is a newer anti-pseudomonal drug effective against resistant PA infections, however resistance against this drug has now also developed and is increasing. In this study, we explored the combination of ceftolozane/tazobactam (CT) and meropenem (MP) as a possible effective regimen against MDR and XDR PA. Methods We obtained 33 non-duplicate isolates of MDR and XDR PA grown from blood, urine and respiratory samples collected from patients admitted between 2015 and 2019 at our two affiliate teaching hospitals. MDR PA was defined as resistance to 3 or more classes of anti-pseudomonal antibiotics, and XDR PA as resistance to all but two or less classes of anti-pseudomonal antibiotics. Antimicrobial preparations of both MP and CT were made according to manufacturer instructions. Susceptibility testing was performed using the checkerboard method in accordance to CLSI guidelines (CLSI M100, 2017). The ATCC 27853 strain of PA used as control. Synergy, additive effect, indifference and antagonism were defined as FIC (fractional inhibitory concentration) indices of ≤0.5, >0.5 to <1, >1 to <4, and >4, respectively. Results Thirteen (39%) of 33 PA isolates were classified as XDR, while 20 (61%) PA isolates were MDR. All isolates were resistant to MP (MIC50 >32 ug/mL), while only 2 (6%) isolates were susceptible to CT (MIC50 64 ug/mL). A synergistic effect was seen in 9 (27.3%) of PA isolates (FIC index range 0.28 to 0.5)— 2 of which were XDR PA, and 7 were MDR PA. An additive effect was seen in 12 (36.4%), with indifference seen in 12 (36.4%) of isolates. In this study, no antagonism was seen when CT and MP were combined. Conclusion When used in combination, CT and MP can exert a synergistic effect against MDR and XDR PA. Additive effect and indifference can also be seen when both antibiotics were used. Moreover, there was no antagonism seen when both antibiotics were combined. This study shows that the use of CT and MP in combination may be an option against XDR and MDR PA infections. Disclosures All Authors: No reported disclosures


Sign in / Sign up

Export Citation Format

Share Document