Characterization of carbapenem-resistant and XDR Pseudomonas aeruginosa in Canada: results of the CANWARD 2007–16 study

2019 ◽  
Vol 74 (Supplement_4) ◽  
pp. iv32-iv38 ◽  
Author(s):  
Melissa G McCracken ◽  
Heather J Adam ◽  
Joseph M Blondeau ◽  
Andrew J Walkty ◽  
James A Karlowsky ◽  
...  

Abstract Objectives Carbapenem-resistant Pseudomonas aeruginosa are emerging worldwide with increasing reports of carbapenemase-producing isolates. Carbapenem-resistant isolates may also be XDR. This study characterized carbapenem-resistant and XDR P. aeruginosa isolated from patients receiving care at Canadian hospitals from 2007 to 2016. Methods Antimicrobial susceptibility testing was performed using CLSI broth microdilution methods. PCR was used to detect carbapenemases (GES, KPC, NDM, IMP, VIM, OXA-48) and other resistance markers; specific carbapenemase gene variants were identified by DNA sequencing. Genetic relatedness was assessed by MLST and PFGE. Results From 2007 to 2016, 3864 isolates of P. aeruginosa were collected; 466 (12.1%) isolates were carbapenem resistant. The prevalence of carbapenem-resistant P. aeruginosa reached a peak of 17.3% in 2014. Colistin (94% susceptible) and ceftolozane/tazobactam (92.5%) were the most active agents against carbapenem-resistant P. aeruginosa. XDR P. aeruginosa comprised 4.5% of isolates; they were found to be genetically diverse and remained susceptible to colistin and ceftolozane/tazobactam. Only 4.3% (n = 20) of carbapenem-resistant P. aeruginosa harboured a carbapenemase; most were blaGES-5 (35%, n = 7). Wide genetic diversity was observed among carbapenem-resistant P. aeruginosa with >200 different sequence types identified. Conclusions Although the prevalence of carbapenem-resistant P. aeruginosa in Canada spiked in 2014 and 2015, carbapenemase-producing P. aeruginosa remain rare with only 20 (4.3%) isolates identified over a 10 year period. Broad genetic diversity was observed among both carbapenem-resistant and XDR phenotypes of P. aeruginosa. Pan-drug-resistant P. aeruginosa have not yet been identified in Canada.

Author(s):  
Jesse D. Sengillo ◽  
Jacob Duker ◽  
Maribel Hernandez ◽  
Jorge Maestre ◽  
Daniela Reyes-Capo ◽  
...  

Abstract Purpose To demonstrate antibiotic susceptibility and genomic virulence factor profiles of Pseudomonas aeruginosa isolates from patients with culture-confirmed endophthalmitis. Methods Clinical isolates from patients diagnosed with pseudomonas endophthalmitis were included. Laboratory antibiotic susceptibility testing and whole genome sequencing was performed on all isolates. Results In the current study, 8 patients had vitreous culture-confirmed endophthalmitis due to P. aeruginosa. All isolates were multi-drug resistant but sensitive to ceftazidime and each fluoroquinolone tested. Whole genome sequencing revealed a total of 179 unique genes. The most common type of virulence genes included those involved in adherence and the secretion system. Seven of 8 (88%) isolates were of the cytoinvasive phenotype (exoST) and no isolates contained exoU. Conclusions P. aeruginosa associated endophthalmitis is often multi-drug resistant and demonstrates a variety of virulence factors with those involved in adherence and the secretion system being the most common.


2013 ◽  
Vol 57 (11) ◽  
pp. 5697-5700 ◽  
Author(s):  
Jingshu Ji ◽  
Jie Wang ◽  
Zhihui Zhou ◽  
Haiping Wang ◽  
Yan Jiang ◽  
...  

ABSTRACTIt is unclear whether the genetic background of drug-resistantPseudomonas aeruginosawas disseminated from a certain clone. Thus, we performed MLST (multilocus sequence typing) of 896P. aeruginosaisolates that were nonsusceptible to imipenem, meropenem, or ceftazidime. This revealed 254 sequence types (STs), including 104 new STs and 34 STs with novel alleles. Thirty-three clonal complexes and 404 singletons were found. In conclusion, drug-resistantP. aeruginosaclones can be developed from diverse genetic backgrounds.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Regeen Handal ◽  
Lulu Qunibi ◽  
Ibrahim Sahouri ◽  
Maha Juhari ◽  
Rula Dawodi ◽  
...  

The American Centers for Disease Control and Prevention (CDC) recognizes Acinetobacter baumannii as a source of global outbreaks and epidemics especially due to its increasing resistance to commercially available antibiotics. In this study, 69 single patient multidrug resistant isolates collected from all over Palestine, except Gaza, were studied. All the isolates were resistant to all the β–lactam antibiotics including the carbapenems. Of the 69 isolates, 82.6% were positive for blaOXA-23, 14.5% were positive for blaOXA-24, and 3% were positive for blaOXA-58. None were positive for blaOXA-143 and blaOXA-235. In addition, 5.8% and 0% were positive for blaNDM and blaKPC, respectively. Of the 69 isolates, none were positive for the aminoglycoside aphA6 gene while 93% were positive for the aphA1 gene. The acetyltransferases aacC1 and aacA4 genes tested positive in 22% and 13% of the isolates, respectively. The ompA biofilm-producing virulence gene was detected in all isolates. Finally, Multilocus Sequence Typing (MLST) of 13 isolates revealed that more than one strain of A. baumannii was circulating in Palestinian hospitals as results revealed that 7 isolates were of ST208, 2 isolates ST218, 1 isolate ST231, 1 isolate ST348, and 2 new Sequence Types. The detection of these drug resistant pathogens is a reminder of the importance of active surveillance for resistant bacteria in order to prevent their spread in hospital settings.


Author(s):  
Fatma Ben Abid ◽  
Clement K. M. Tsui ◽  
Yohei Doi ◽  
Anand Deshmukh ◽  
Christi L. McElheny ◽  
...  

AbstractOne hundred forty-nine carbapenem-resistant Enterobacterales from clinical samples obtained between April 2014 and November 2017 were subjected to whole genome sequencing and multi-locus sequence typing. Klebsiella pneumoniae (81, 54.4%) and Escherichia coli (38, 25.5%) were the most common species. Genes encoding metallo-β-lactamases were detected in 68 (45.8%) isolates, and OXA-48-like enzymes in 60 (40.3%). blaNDM-1 (45; 30.2%) and blaOXA-48 (29; 19.5%) were the most frequent. KPC-encoding genes were identified in 5 (3.6%) isolates. Most common sequence types were E. coli ST410 (8; 21.1%) and ST38 (7; 18.4%), and K. pneumoniae ST147 (13; 16%) and ST231 (7; 8.6%).


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 361
Author(s):  
Adela Teban-Man ◽  
Anca Farkas ◽  
Andreea Baricz ◽  
Adriana Hegedus ◽  
Edina Szekeres ◽  
...  

Carbapenemase-producing Klebsiella pneumoniae (CPKP) isolated from influent (I) and effluent (E) of two wastewater treatment plants, with (S1) or without (S2) hospital contribution, were investigated. The strains belonged to the Kp1 phylogroup, their highest frequency being observed in S1, followed by S2. The phenotypic and genotypic hypervirulence tests were negative for all the strains tested. At least one carbapenemase gene (CRG), belonging to the blaKPC, blaOXA-48, blaNDM and blaVIM families, was observed in 63% of CPKP, and more than half co-harboured two to four CRGs, in different combinations. Only five CRG variants were observed, regardless of wastewater type: blaKPC-2, blaNDM-1, blaNDM-6, blaVIM-2, and blaOXA-48. Sequence types ST258, ST101 and ST744 were common for both S1 and S2, while ST147, ST525 and ST2502 were found only in S1 and ST418 only in S2. The strains tested were multi-drug resistant (MDR), all being resistant to beta-lactams, cephalosporins, carbapenems, monobactams and fluoroquinolones, followed by various resistance profiles to aminoglycosides, trimethoprim-sulphamethoxazole, tigecycline, chloramphenicol and tetracycline. After principal component analysis, the isolates in S1 and S2 groups did not cluster independently, confirming that the antibiotic susceptibility patterns and gene-type profiles were both similar in the K. pneumoniae investigated, regardless of hospital contribution to the wastewater type.


2014 ◽  
Vol 63 (10) ◽  
pp. 1316-1323 ◽  
Author(s):  
Alima Gharout-Sait ◽  
Samer-Ahmed Alsharapy ◽  
Lucien Brasme ◽  
Abdelaziz Touati ◽  
Rachida Kermas ◽  
...  

Ten carbapenem-resistant Enterobacteriaceae (eight Klebsiella pneumoniae isolates and two Enterobacter cloacae) isolates from Yemen were investigated using in vitro antimicrobial susceptibility testing, phenotypic carbapenemase detection, multilocus sequence typing (MLST) and replicon typing. Carbapenemase, extended-spectrum β-lactamase (ESBL) and plasmid-mediated quinolone resistance determinant genes were identified using PCR and sequencing. All of the 10 carbapenem-resistant Enterobacteriaceae were resistant to β-lactams, tobramycin, ciprofloxacin and cotrimoxazole. Imipenem, doripenem and meropenem MICs ranged from 2 to >32 mg l−1 and ertapenem MICs ranged from 6 to >32 mg l−1. All of the K. pneumoniae isolates showed ESBL activity in phenotypic tests. Genes encoding bla NDM were detected in all strains. All K. pneumoniae strains produced CTX-M-15 ESBL and SHV β-lactamases. TEM-1 β-lactamase was detected in seven isolates. Nine isolates were qnr positive including QnrB1, QnrA1 and QnrS1, and six isolates produced AAC-6′-Ib-cr. MLST identified five different sequence types (STs): ST1399, ST147, ST29, ST405 and ST340. Replicon typing showed the presence of IncFII1K plasmids in four transformants. To the best of our knowledge, this is the first report of NDM-1-producing Enterobacteriaceae isolates in Yemen.


2016 ◽  
Vol 61 (1) ◽  
Author(s):  
Deanna J. Buehrle ◽  
Ryan K. Shields ◽  
Lloyd G. Clarke ◽  
Brian A. Potoski ◽  
Cornelius J. Clancy ◽  
...  

ABSTRACT We reviewed 37 patients treated for bacteremia due to carbapenem-resistant (CR) Pseudomonas aeruginosa. Although 65% of isolates were multiple-drug resistant, therapeutic options were available, as all were susceptible to ≥1 antibiotic. A total of 92% of patients received active antimicrobial therapy, but only 57% received early active therapy (within 48 h). Fourteen-day mortality was 19%. Microbiologic failure occurred in 29%. The Pitt bacteremia score (P = 0.046) and delayed active therapy (P = 0.027) were predictive of death and microbiologic failure, respectively.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S237-S237
Author(s):  
Allison C Brown ◽  
Sarah Malik ◽  
Jennifer Huang ◽  
Amelia Bhatnagar ◽  
Rocio Balbuena ◽  
...  

Abstract Background Infections with metallo-β-lactamase (MBL)-producing organisms are emerging in the United States. Treatment options for these infections are limited. We describe MBL genes among carbapenemase positive carbapenem-resistant Enterobacteriaceae (CP-CRE) and Pseudomonas aeruginosa (CP-CRPA) isolates tested during the first two years of the Antibiotic Resistance Laboratory Network (AR Lab Network). Methods State and local public health laboratories tested CRE and CRPA isolates for organism identification, antimicrobial susceptibility, and PCR-based detection of blaKPC, blaNDM, blaOXA-48-like, blaVIM, and blaIMP carbapenemase genes. All testing results were sent to CDC at least monthly. Results Since January 2017, the AR Lab Network tested 21,733 CRE and 14,141 CRPA. CP-CRE were detected in 37% of CRE; 2% of CRPA were CP-CRPA. Among CP-CRE, 9% (686/8016) were MBL-producers (NDM, VIM, or IMP). Among MBL-producers, a blaNDM gene was detected most often (81%; 551/686). blaNDM were most common among Klebsiella spp. (47%; 261/551), blaIMP were most common among Providencia spp. (53%; 40/75), blaVIM was most common among Enterobacter spp. (19%; 25/62). Twelve percent (96) of MBL CP-CRE contained more than one carbapenemase gene. Among CP-CRPA, 73% (218/300) were MBL producers and blaVIM was the most common gene (62%; 186). Three (1%) MBL CP-CRPA contained more than one carbapenemase. Conclusion Increased testing of CRE and CRPA isolates through the AR Lab Network has facilitated early and rapid detection of hard-to-treat infections caused by MBL-producing organisms across the United States. The widespread distribution of MBL genes highlights the continued need for containment strategies that help prevent transmission between patients and among healthcare facilities. To support therapeutic decisions for severe infections caused by MBL-producing organisms, the AR Lab Network is now offering rapid susceptibility testing against aztreonam/avibactam, using digital dispenser technology. This testing program aims to close the gap between the availability of new drugs or drug combinations and the availability of commercial AST methods, thereby improving patient safety and antimicrobial stewardship. Disclosures All authors: No reported disclosures.


Sign in / Sign up

Export Citation Format

Share Document