Neuroprotective effect of phosphocreatine on oxidative stress and mitochondrial dysfunction induced apoptosis in vitro and in vivo: Involvement of dual PI3K/Akt and Nrf2/HO-1 pathways

2018 ◽  
Vol 120 ◽  
pp. 228-238 ◽  
Author(s):  
Hailong Li ◽  
Zhongyuan Tang ◽  
Peng Chu ◽  
Yanlin Song ◽  
Ying Yang ◽  
...  
Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 375
Author(s):  
Jin Young Hong ◽  
Hyunseong Kim ◽  
Junseon Lee ◽  
Wan-Jin Jeon ◽  
Seung Ho Baek ◽  
...  

Inula britannica var. chinensis (IBC) has been used as a traditional medicinal herb to treat inflammatory diseases. Although its anti-inflammatory and anti-oxidative effects have been reported, whether IBC exerts neuroprotective effects and the related mechanisms in cortical neurons remain unknown. In this study, we investigated the effects of different concentrations of IBC extract (5, 10, and 20 µg/mL) on cortical neurons using a hydrogen peroxide (H2O2)-induced injury model. Our results demonstrate that IBC can effectively enhance neuronal viability under in vitro-modeled reaction oxygen species (ROS)-generating conditions by inhibiting mitochondrial ROS production and increasing adenosine triphosphate level in H2O2-treated neurons. Additionally, we confirmed that neuronal death was attenuated by improving the mitochondrial membrane potential status and regulating the expression of cytochrome c, a protein related to cell death. Furthermore, IBC increased the expression of brain-derived neurotrophic factor and nerve growth factor. Furthermore, IBC inhibited the loss and induced the production of synaptophysin, a major synaptic vesicle protein. This study is the first to demonstrate that IBC exerts its neuroprotective effect by reducing mitochondria-associated oxidative stress and improving mitochondrial dysfunction.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1231
Author(s):  
Jin Woo Kim ◽  
Eun Hee Jo ◽  
Ji Eun Moon ◽  
Hanvit Cha ◽  
Moon Han Chang ◽  
...  

Various stresses derived from both internal and external oxidative environments lead to the excessive production of reactive oxygen species (ROS) causing progressive intracellular oxidative damage and ultimately cell death. The objective of this study was to evaluate the protective effects of Citrus junos Tanaka peel extract (CE) against oxidative-stress induced the apoptosis of lung cells and the associated mechanisms of action using in vitro and in vivo models. The protective effect of CE was evaluated in vitro in NCI-H460 human lung cells exposed to pro-oxidant H2O2. The preventive effect of CE (200 mg/kg/day, 10 days) against pulmonary injuries following acrolein inhalation (10 ppm for 12 h) was investigated using an in vivo mouse model. Herein, we demonstrated the inhibitory effect of CE against the oxidative stress-induced apoptosis of lung cells under a highly oxidative environment. The function of CE is linked with its ability to suppress ROS-dependent, p53-mediated apoptotic signaling. Furthermore, we evaluated the protective role of CE against apoptotic pulmonary injuries associated with the inhalation of acrolein, a ubiquitous and highly oxidizing environmental respiratory pollutant, through the attenuation of oxidative stress. The results indicated that CE exhibits a protective effect against the oxidative stress-induced apoptosis of lung cells in both in vitro and in vivo models.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xiaoye Fan ◽  
Wei Wei ◽  
Jingbo Huang ◽  
Liping Peng ◽  
Xinxin Ci

Cisplatin (CDDP) is a widely used drug for cancer treatment that exhibits major side effects in normal tissues, such as nephrotoxicity in kidneys. The Nrf2 signaling pathway, a regulator of mitochondrial dysfunction, oxidative stress and inflammation, is a potential therapeutic target in CDDP-induced nephrotoxicity. We explored the underlying mechanisms in wild-type (WT) and Nrf2−/− mice on CDDP-induced renal dysfunction in vivo. We found that Nrf2 deficiency aggravated CDDP-induced nephrotoxicity, and Daph treatment significantly ameliorated the renal injury characterized by biochemical markers in WT mice and reduced the CDDP-induced cell damage. In terms of the mechanism, Daph upregulated the SIRT1 and SIRT6 expression in vivo and in vitro. Furthermore, Daph inhibited the expression level of NOX4, whereas it activated Nrf2 translocation and antioxidant enzymes HO-1 and NQO1, and alleviated oxidative stress and mitochondrial dysfunction. Moreover, Daph suppressed CDDP-induced NF-κB and MAPK inflammation pathways, as well as p53 and cleaved caspase-3 apoptosis pathways. Notably, the protective effects of Daph in WT mice were completely abrogated in Nrf2−/− mice. Moreover, Daph enhanced, rather than attenuated, the tumoricidal effect of CDDP.


2018 ◽  
Vol 19 (1) ◽  
pp. 50-64 ◽  
Author(s):  
Yiting Yin ◽  
Xin Qi ◽  
Yuan Qiao ◽  
Huaxiang Liu ◽  
Zihan Yan ◽  
...  

Background: The notion that proteasome inhibitor bortezomib (BTZ) induced intracellular oxidative stress resulting in peripheral neuropathy has been generally accepted. The association of mitochondrial dysfunction, cell apoptosis, and endoplasmic reticulum (ER) stress with intracellular oxidative stress is ambiguous and still needs to be investigated. The activation of activating transcription factor 3 (ATF3) is a stress-hub gene which was upregulated in dorsal root ganglion (DRG) neurons after different kinds of peripheral nerve injuries. Objective: To investigate a mechanism underlying the action of BTZ-induced intracellular oxidative stress, mitochondrial dysfunction, cell apoptosis, and ER stress via activation of ATF3. </P><P> Methods: Primary cultured DRG neurons with BTZ induced neurotoxicity and DRG from BTZ induced painful peripheral neuropathic rats were used to approach these questions. Results: BTZ administration caused the upregulation of ATF3 paralleled with intracellular oxidative stress, mitochondrial dysfunction, cell apoptosis, and ER stress in DRG neurons both in vitro and in vivo. Blocking ATF3 signaling by small interfering RNA (siRNA) gene silencing technology resulted in decreased intracellular oxidative stress, mitochondrial dysfunction, cell apoptosis, and ER stress in DRG neurons after BTZ treatment. This study exhibited important mechanistic insight into how BTZ induces neurotoxicity through the activation of ATF3 resulting in intracellular oxidative stress, mitochondrial dysfunction, cell apoptosis, and ER stress and provided a novel potential therapeutic target by blocking ATF3 signaling.


2007 ◽  
Vol 35 (04) ◽  
pp. 681-691 ◽  
Author(s):  
Ting Li ◽  
Jian-Wen Liu ◽  
Xiao-Dong Zhang ◽  
Ming-Chuan Guo ◽  
Guang Ji

Picroside II is an active constituent extracted from the traditional Chinese medicine (TCM) Hu-Huang-Lian. To evaluate the neuroprotective effect of picroside II, PC12 cells were treated with glutamate in vitro and male ICR mice were treated with AlCl 3in vivo. Pre-treatment of PC12 cells with picroside II could enhance the cell viability and decrease the level of intracellular reactive oxygen species (ROS) induced by glutamate. By DNA fragmentation and flow cytometry assay, picroside II (1.2 mg/ml) significantly prevented glutamate-induced cell apoptosis. In the animal study, amnesia was induced in mice by AlCl 3 (100 mg/kg/d, i.v.). Pricroside II, at the dose of 20 and 40 mg/kg/d (i.g.), markedly ameliorated AlCl 3-induced learning and memory dysfunctions and attenuated AlCl 3-induced histological changes. This was associated with the significant increased superoxide dismutase (SOD) activity in the brain of experimental mice. All these results indicated that picroside II possessed the therapeutic potential in protecting against neurological injuries damaged by oxidative stress.


2004 ◽  
Vol 92 (6) ◽  
pp. 887-894 ◽  
Author(s):  
R.-F. S. Huang ◽  
H.-C. Yaong ◽  
S.-C. Chen ◽  
Y.-F. Lu

Folate has recently been proposed as a new antioxidant. Folate supplementation may have a protective effect in counteracting oxidant-induced apoptotic damage. The present studies were undertaken to examine whether there is a direct link between folate levels, antioxidant capability and reduced apoptotic damage. Using anin vitrocellular model of 7-ketocholesterol (KC)-induced apoptosis, U937 cells were pre-cultured with a folate-deficient medium supplemented with various levels of folate (2–1500μmol/l) before treatment with 7-KC. Apoptotic markers, mitochondria-associated death signals and levels of reactive oxygen species were assayed. After treatment with 7-KC for 30h, low and high levels of folate supplementation significantly (P<0.05) reduced nuclear DNA loss. Only high levels of folate supplementation (>1000μmol/l) were effective in counteracting 7-KC-promoted apoptotic membrane phosphatidylserine exposure and DNA laddering. The attenuation of 7-KC-induced apoptotic damage by high-dose folate supplementation coincided with a partial normalization of mitochondria membrane potential dissipation, a suppression of cytochromecrelease and an inhibition of procaspase 3 activation. The prevention of mitochondrial dysfunctions and apoptotic processes was associated with antioxidant actions of high-dose folate by a marked scavenging of intracellular superoxide. Collectively, our present results demonstrate thatin vitrofolate supplementation exerts differentially protective effects against 7-KC-induced damage. High-dose supplementation alleviates oxidative stress, mitochondria-associated death signalling and apoptosis induced by 7-KC. However, thein vivorelevance is not clear and requires further study.


Reproduction ◽  
2020 ◽  
Vol 160 (1) ◽  
pp. 129-140 ◽  
Author(s):  
Hong-Jie Yuan ◽  
Zhi-Bin Li ◽  
Xin-Yue Zhao ◽  
Guang-Yi Sun ◽  
Guo-Liang Wang ◽  
...  

Mechanisms by which female stress and particularly glucocorticoids impair oocyte competence are largely unclear. Although one study demonstrated that glucocorticoids triggered apoptosis in ovarian cells and oocytes by activating the FasL/Fas system, other studies suggested that they might induce apoptosis through activating other signaling pathways as well. In this study, both in vivo and in vitro experiments were conducted to test the hypothesis that glucocorticoids might trigger apoptosis in oocytes and ovarian cells through activating the TNF-α system. The results showed that cortisol injection of female mice (1.) impaired oocyte developmental potential and mitochondrial membrane potential with increased oxidative stress; (2.) induced apoptosis in mural granulosa cells (MGCs) with increased oxidative stress in the ovary; and (3.) activated the TNF-α system in both ovaries and oocytes. Culture with corticosterone induced apoptosis and activated the TNF-α system in MGCs. Knockdown or knockout of TNF-α significantly ameliorated the pro-apoptotic effects of glucocorticoids on oocytes and MGCs. However, culture with corticosterone downregulated TNF-α expression significantly in oviductal epithelial cells. Together, the results demonstrated that glucocorticoids impaired oocyte competence and triggered apoptosis in ovarian cells through activating the TNF-α system and that the effect of glucocorticoids on TNF-α expression might vary between cell types.


2012 ◽  
Vol 302 (9) ◽  
pp. E1142-E1152 ◽  
Author(s):  
Baosheng Chen ◽  
Methodius G. Tuuli ◽  
Mark S. Longtine ◽  
Joong Sik Shin ◽  
Russell Lawrence ◽  
...  

The human placenta is key to pregnancy outcome, and the elevated oxidative stress present in many complicated pregnancies contributes to placental dysfunction and suboptimal pregnancy outcomes. We tested the hypothesis that pomegranate juice, which is rich in polyphenolic antioxidants, limits placental trophoblast injury in vivo and in vitro. Pregnant women with singleton pregnancies were randomized at 35∼38 wk gestation to 8 oz/day of pomegranate juice or apple juice (placebo) until the time of delivery. Placental tissues from 12 patients (4 in the pomegranate group and 8 in the control group) were collected for analysis of oxidative stress. The preliminary in vivo results were extended to oxidative stress and cell death assays in vitro. Placental explants and cultured primary human trophoblasts were exposed to pomegranate juice or glucose (control) under defined oxygen tensions and chemical stimuli. We found decreased oxidative stress in term human placentas from women who labored after prenatal ingestion of pomegranate juice compared with apple juice as control. Moreover, pomegranate juice reduced in vitro oxidative stress, apoptosis, and global cell death in term villous explants and primary trophoblast cultures exposed to hypoxia, the hypoxia mimetic cobalt chloride, and the kinase inhibitor staurosporine. Punicalagin, but not ellagic acid, both prominent polyphenols in pomegranate juice, reduced oxidative stress and stimulus-induced apoptosis in cultured syncytiotrophoblasts. We conclude that pomegranate juice reduces placental oxidative stress in vivo and in vitro while limiting stimulus-induced death of human trophoblasts in culture. The polyphenol punicalagin mimics this protective effect. We speculate that antenatal intake of pomegranate may limit placental injury and thereby may confer protection to the exposed fetus.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Douglas Vieira Thomaz ◽  
Luanna Fernandes Peixoto ◽  
Thiago Sardinha de Oliveira ◽  
James Oluwagbamigbe Fajemiroye ◽  
Hiasmin Franciely da Silva Neri ◽  
...  

Eugenia dysenterica ex DC Mart. (Myrtaceae), popularly known as “cagaita,” is a Brazilian plant rich in polyphenols and other antioxidant compounds. Aiming to evaluate the potential use of cagaita in pathologies involving oxidative stress, such as neurodegenerative disorders, this study investigated its antioxidant potential and neuroprotective effect. Electrochemical approaches and aluminium-induced neurotoxicity were used to determine respectively in vitro and in vivo antioxidant properties of cagaita. Voltammetric experiments were carried out in a three-electrode system, whose working electrode consisted of glassy carbon. Male Swiss mice were administered with AlCl3 orally at a dose of 100 mg/kg/day and with cagaita leaf hydroalcoholic extract (CHE) at doses of 10, 100, and 300 mg/kg/day. The redox behavior of CHE presented similar features to that of quercetin, a widely known antioxidant standard. CHE prevented mouse memory impairment which resulted from aluminium intake. In addition, biochemical markers of oxidative stress (catalase, superoxide dismutase activity, and lipid peroxidation) were normalized by CHE treatment. The potential of CHE to prevent aluminium-induced neurotoxicity was reflected at the microscopic level, through the decrease of the number of eosinophilic necrosis phenotypes seen in treated groups. Moreover, the protective effect of CHE was similar to that of quercetin, which was taken as the standard. These findings showed that the CHE of cagaita leaves has a potential to protect the brain against oxidative-induced brain damage.


Sign in / Sign up

Export Citation Format

Share Document